def fsaf_bbox( model=None, nms=True, class_specific_filter=True, name='fsaf-bbox', ): """ Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly. This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph. These layers include applying the regression values to the anchors and performing NMS. Args model: RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs. nms: Whether to use non-maximum suppression for the filtering step. class_specific_filter: Whether to use class specific filtering or filter for the best scoring class only. name: Name of the model. Returns A keras.models.Model which takes an image as input and outputs the detections on the image. The order is defined as follows: ``` [ boxes, scores, labels, other[0], other[1], ... ] ``` """ # create RetinaNet model assert_training_model(model) # compute the anchors features = [ model.get_layer(p_name).output for p_name in ['P3', 'P4', 'P5', 'P6', 'P7'] ] # (b, sum(fh*fw), num_classes) classification = model.outputs[2] # (b, sum(fh*fw), 4) regression = model.outputs[3] locations, strides = Locations(strides=configure.STRIDES)(features) # apply predicted regression to anchors boxes = RegressBoxes(name='boxes')([locations, strides, regression]) boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes]) # filter detections (apply NMS / score threshold / select top-k) detections = layers.FilterDetections( nms=nms, class_specific_filter=class_specific_filter, name='filtered_detections')([boxes, classification]) # construct the model return keras.models.Model(inputs=model.inputs[0], outputs=detections, name=name)
def __init__(self, tflite_model, score_threshold) -> None: self.interpreter = tf.lite.Interpreter(tflite_model, num_threads=4) self.interpreter.allocate_tensors() self.inputs = [self.interpreter.get_input_details()[i]['index'] for i in range(2)] self.outputs = [self.interpreter.tensor(self.interpreter.get_output_details()[i]['index']) for i in range(4)] print([self.interpreter.get_output_details()[i]['dtype'] for i in range(4)]) post_inputs=[ tf.keras.layers.Input(shape=(None, 4)), tf.keras.layers.Input(shape=(None, 1)), tf.keras.layers.Input(shape=(None, 3)), tf.keras.layers.Input(shape=(None, 3)) ] op = layers.FilterDetections(num_rotation_parameters=3, nms_threshold=score_threshold)([post_inputs[0], post_inputs[1], post_inputs[2], post_inputs[3]]) self.postprocess = tf.keras.Model(inputs=post_inputs, outputs=op)
def retinanet_bbox( model = None, nms = True, class_specific_filter = True, name = 'retinanet-bbox', anchor_params = None, **kwargs ): """!@brief Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly. This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph. These layers include applying the regression values to the anchors and performing NMS. @param model : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs. @param nms : Whether to use non-maximum suppression for the filtering step. @param class_specific_filter : Whether to use class specific filtering or filter for the best scoring class only. @param name : Name of the model. @param anchor_params : Struct containing anchor parameters. If None, default values are used. @param *kwargs : Additional kwargs to pass to the minimal retinanet model. @returns A keras.models.Model which takes an image as input and outputs the detections on the image. The order is defined as follows: ``` [ boxes, scores, labels, other[0], other[1], ... ] ``` """ # if no anchor parameters are passed, use default values if anchor_params is None: anchor_params = AnchorParameters.default # create RetinaNet model if model is None: model = retinanet(num_anchors=anchor_params.num_anchors(), **kwargs) else: assert_training_model(model) # compute the anchors features = [model.get_layer(p_name).output for p_name in ['P2', 'P3', 'P4', 'P5']] anchors = __build_anchors(anchor_params, features) # we expect the anchors, regression and classification values as first output regression = model.outputs[0] classification = model.outputs[1] # "other" can be any additional output from custom submodels, by default this will be [] other = model.outputs[2:] # apply predicted regression to anchors boxes = layers.RegressBoxes(name='boxes')([anchors, regression]) boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes]) # filter detections (apply NMS / score threshold / select top-k) detections = layers.FilterDetections( nms = nms, class_specific_filter = class_specific_filter, name = 'filtered_detections' )([boxes, classification] + other) # construct the model return keras.models.Model(inputs=model.inputs, outputs=detections, name=name)
def retinanet_bbox(model=None, anchor_param=default_anchor_configs, nms=True, name='retinanet-bbox', **kwargs): """ Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly. This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph. These layers include applying the regression values to the anchors and performing NMS. Args model : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs. anchor_parameters : Struct containing configuration for anchor generation (sizes, strides, ratios, scales). name : Name of the model. *kwargs : Additional kwargs to pass to the minimal retinanet model. Returns A keras.models.Model which takes an image as input and outputs the detections on the image. The order is defined as follows: ``` [ boxes, scores, labels, other[0], other[1], ... ] ``` """ # scales = [2 ** i for i in anchor_param['scales']] anchor_parameters = AnchorParameters( sizes=anchor_param['sizes'], strides=anchor_param['strides'], ratios=np.array(anchor_param['ratios'], keras.backend.floatx()), scales=np.array([2**index for index in anchor_param['scales']], keras.backend.floatx()), ) if model is None: model = retinanet(num_anchors=anchor_parameters.num_anchors(), **kwargs) # compute the anchors features = [ model.get_layer(name).output for name in ['P3', 'P4', 'P5', 'P6', 'P7'] ] anchors = __build_anchors(anchor_parameters, features) # we expect the anchors, regression and classification values as first output regression = model.outputs[0] classification = model.outputs[1] # "other" can be any additional output from custom submodels, by default this will be [] other = model.outputs[2:] # apply predicted regression to anchors boxes = layers.RegressBoxes(name='boxes')([anchors, regression]) boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes]) # filter detections (apply NMS / score threshold / select top-k) detections = layers.FilterDetections( nms=nms, name='filtered_detections')([boxes, classification] + other) outputs = detections # construct the model return keras.models.Model(inputs=model.inputs, outputs=outputs, name=name)
def main(): backbone = models.backbone('resnet50') # create the generators #train_generator, validation_generator = create_generators(args, backbone.preprocess_image) random_transform = True val_annotations = './data/processed/val.csv' annotations = './data/processed/train.csv' classes = './data/processed/classes.csv' common_args = { 'batch_size': 8, 'image_min_side': 224, 'image_max_side': 1333, 'preprocess_image': backbone.preprocess_image, } # create random transform generator for augmenting training data if random_transform: transform_generator = random_transform_generator( min_rotation=-0.05, max_rotation=0.05, min_translation=(-0.1, -0.1), max_translation=(0.1, 0.1), #min_shear=-0.1, #max_shear=0.1, min_scaling=(0.8, 0.8), max_scaling=(1.2, 1.2), flip_x_chance=0.5, #flip_y_chance=0.5, ) else: transform_generator = random_transform_generator(flip_x_chance=0.5) train_generator = CSVGenerator(annotations, classes, transform_generator=transform_generator, **common_args) if val_annotations: validation_generator = CSVGenerator(val_annotations, classes, **common_args) else: validation_generator = None #train_generator, validation_generator = create_generators(args, backbone.preprocess_image) num_classes = 1 # change model = backbone.retinanet(num_classes, backbone='resnet50') training_model = model # prediction_model = retinanet_bbox(model=model) nms = True class_specific_filter = True name = 'retinanet-bbox' anchor_params = AnchorParameters.default # compute the anchors features = [ model.get_layer(p_name).output for p_name in ['P3', 'P4', 'P5', 'P6', 'P7'] ] anchor = [ layers.Anchors(size=anchor_params.sizes[i], stride=anchor_params.strides[i], ratios=anchor_params.ratios, scales=anchor_params.scales, name='anchors_{}'.format(i))(f) for i, f in enumerate(features) ] anchors = keras.layers.Concatenate(axis=1, name='anchors')(anchor) # we expect the anchors, regression and classification values as first output regression = model.outputs[0] # check classification = model.outputs[1] # "other" can be any additional output from custom submodels, by default this will be [] other = model.outputs[2:] # apply predicted regression to anchors boxes = layers.RegressBoxes(name='boxes')([anchors, regression]) boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes]) # filter detections (apply NMS / score threshold / select top-k) detections = layers.FilterDetections( nms=nms, class_specific_filter=class_specific_filter, name='filtered_detections')([boxes, classification] + other) outputs = detections # construct the model prediction_model = keras.models.Model(inputs=model.inputs, outputs=outputs, name=name) # end of prediction_model = retinanet_bbox(model=model) # compile model training_model.compile(loss={ 'regression': losses.smooth_l1(), 'classification': losses.focal() }, optimizer=keras.optimizers.SGD(lr=1e-2, momentum=0.9, decay=.0001, nesterov=True, clipnorm=1) # , clipnorm=0.001) ) print(model.summary()) # start of create_callbacks #callbacks = create_callbacks(model,training_model,prediction_model,validation_generator,args,) callbacks = [] tensorboard_callback = None tensorboard_callback = keras.callbacks.TensorBoard( log_dir='', histogram_freq=0, batch_size=8, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) callbacks.append(tensorboard_callback) evaluation = Evaluate(validation_generator, tensorboard=tensorboard_callback, weighted_average=False) evaluation = RedirectModel(evaluation, prediction_model) callbacks.append(evaluation) makedirs('./snapshots/') checkpoint = keras.callbacks.ModelCheckpoint(os.path.join( './snapshots/', '{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format( backbone='resnet50', dataset_type='csv')), verbose=1, save_best_only=False, monitor="mAP", mode='max') checkpoint = RedirectModel(checkpoint, model) callbacks.append(checkpoint) callbacks.append( keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.9, patience=4, verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=0)) steps = 2500 epochs = 25 # start training history = training_model.fit( generator=train_generator, steps_per_epoch=steps, epochs=epochs, verbose=1, callbacks=callbacks, ) timestr = time.strftime("%Y-%m-%d-%H%M") history_path = os.path.join( './snapshots/', '{timestr}_{backbone}.csv'.format(timestr=timestr, backbone='resnet50', dataset_type='csv')) pd.DataFrame(history.history).to_csv(history_path)