Пример #1
0
def fsaf_bbox(
    model=None,
    nms=True,
    class_specific_filter=True,
    name='fsaf-bbox',
):
    """
    Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly.

    This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph.
    These layers include applying the regression values to the anchors and performing NMS.

    Args
        model: RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs.
        nms: Whether to use non-maximum suppression for the filtering step.
        class_specific_filter: Whether to use class specific filtering or filter for the best scoring class only.
        name: Name of the model.

    Returns
        A keras.models.Model which takes an image as input and outputs the detections on the image.

        The order is defined as follows:
        ```
        [
            boxes, scores, labels, other[0], other[1], ...
        ]
        ```
    """
    # create RetinaNet model
    assert_training_model(model)

    # compute the anchors
    features = [
        model.get_layer(p_name).output
        for p_name in ['P3', 'P4', 'P5', 'P6', 'P7']
    ]

    # (b, sum(fh*fw), num_classes)
    classification = model.outputs[2]
    # (b, sum(fh*fw), 4)
    regression = model.outputs[3]
    locations, strides = Locations(strides=configure.STRIDES)(features)

    # apply predicted regression to anchors
    boxes = RegressBoxes(name='boxes')([locations, strides, regression])
    boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes])

    # filter detections (apply NMS / score threshold / select top-k)
    detections = layers.FilterDetections(
        nms=nms,
        class_specific_filter=class_specific_filter,
        name='filtered_detections')([boxes, classification])

    # construct the model
    return keras.models.Model(inputs=model.inputs[0],
                              outputs=detections,
                              name=name)
Пример #2
0
 def __init__(self, tflite_model, score_threshold) -> None:
     self.interpreter = tf.lite.Interpreter(tflite_model, num_threads=4)
     self.interpreter.allocate_tensors() 
     self.inputs = [self.interpreter.get_input_details()[i]['index'] for i in range(2)]
     self.outputs = [self.interpreter.tensor(self.interpreter.get_output_details()[i]['index']) for i in range(4)]
     print([self.interpreter.get_output_details()[i]['dtype'] for i in range(4)])
     post_inputs=[
         tf.keras.layers.Input(shape=(None, 4)),
         tf.keras.layers.Input(shape=(None, 1)),
         tf.keras.layers.Input(shape=(None, 3)),
         tf.keras.layers.Input(shape=(None, 3))
     ]
     op = layers.FilterDetections(num_rotation_parameters=3, nms_threshold=score_threshold)([post_inputs[0], post_inputs[1], post_inputs[2], post_inputs[3]])
     self.postprocess = tf.keras.Model(inputs=post_inputs, outputs=op)
Пример #3
0
def retinanet_bbox(
    model                 = None,
    nms                   = True,
    class_specific_filter = True,
    name                  = 'retinanet-bbox',
    anchor_params         = None,
    **kwargs
):
    """!@brief
    Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly.

    This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph.
    These layers include applying the regression values to the anchors and performing NMS.

    @param model                 : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs.
    @param nms                   : Whether to use non-maximum suppression for the filtering step.
    @param class_specific_filter : Whether to use class specific filtering or filter for the best scoring class only.
    @param name                  : Name of the model.
    @param anchor_params         : Struct containing anchor parameters. If None, default values are used.
    @param *kwargs               : Additional kwargs to pass to the minimal retinanet model.

    @returns
        A keras.models.Model which takes an image as input and outputs the detections on the image.

        The order is defined as follows:
        ```
        [
            boxes, scores, labels, other[0], other[1], ...
        ]
        ```
    """

    # if no anchor parameters are passed, use default values
    if anchor_params is None:
        anchor_params = AnchorParameters.default

    # create RetinaNet model
    if model is None:
        model = retinanet(num_anchors=anchor_params.num_anchors(), **kwargs)
    else:
        assert_training_model(model)

    # compute the anchors
    features = [model.get_layer(p_name).output for p_name in ['P2', 'P3', 'P4', 'P5']]
    anchors  = __build_anchors(anchor_params, features)

    # we expect the anchors, regression and classification values as first output
    regression     = model.outputs[0]
    classification = model.outputs[1]

    # "other" can be any additional output from custom submodels, by default this will be []
    other = model.outputs[2:]

    # apply predicted regression to anchors
    boxes = layers.RegressBoxes(name='boxes')([anchors, regression])
    boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes])

    # filter detections (apply NMS / score threshold / select top-k)
    detections = layers.FilterDetections(
        nms                   = nms,
        class_specific_filter = class_specific_filter,
        name                  = 'filtered_detections'
    )([boxes, classification] + other)

    # construct the model
    return keras.models.Model(inputs=model.inputs, outputs=detections, name=name)
Пример #4
0
def retinanet_bbox(model=None,
                   anchor_param=default_anchor_configs,
                   nms=True,
                   name='retinanet-bbox',
                   **kwargs):
    """ Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly.

    This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph.
    These layers include applying the regression values to the anchors and performing NMS.

    Args
        model             : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs.
        anchor_parameters : Struct containing configuration for anchor generation (sizes, strides, ratios, scales).
        name              : Name of the model.
        *kwargs           : Additional kwargs to pass to the minimal retinanet model.

    Returns
        A keras.models.Model which takes an image as input and outputs the detections on the image.

        The order is defined as follows:
        ```
        [
            boxes, scores, labels, other[0], other[1], ...
        ]
        ```
    """
    # scales = [2 ** i for i in anchor_param['scales']]
    anchor_parameters = AnchorParameters(
        sizes=anchor_param['sizes'],
        strides=anchor_param['strides'],
        ratios=np.array(anchor_param['ratios'], keras.backend.floatx()),
        scales=np.array([2**index for index in anchor_param['scales']],
                        keras.backend.floatx()),
    )

    if model is None:
        model = retinanet(num_anchors=anchor_parameters.num_anchors(),
                          **kwargs)

    # compute the anchors
    features = [
        model.get_layer(name).output
        for name in ['P3', 'P4', 'P5', 'P6', 'P7']
    ]
    anchors = __build_anchors(anchor_parameters, features)

    # we expect the anchors, regression and classification values as first output
    regression = model.outputs[0]
    classification = model.outputs[1]

    # "other" can be any additional output from custom submodels, by default this will be []
    other = model.outputs[2:]

    # apply predicted regression to anchors
    boxes = layers.RegressBoxes(name='boxes')([anchors, regression])
    boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes])

    # filter detections (apply NMS / score threshold / select top-k)
    detections = layers.FilterDetections(
        nms=nms, name='filtered_detections')([boxes, classification] + other)

    outputs = detections

    # construct the model
    return keras.models.Model(inputs=model.inputs, outputs=outputs, name=name)
Пример #5
0
def main():
    backbone = models.backbone('resnet50')
    # create the generators
    #train_generator, validation_generator = create_generators(args, backbone.preprocess_image)
    random_transform = True
    val_annotations = './data/processed/val.csv'
    annotations = './data/processed/train.csv'
    classes = './data/processed/classes.csv'
    common_args = {
        'batch_size': 8,
        'image_min_side': 224,
        'image_max_side': 1333,
        'preprocess_image': backbone.preprocess_image,
    }
    # create random transform generator for augmenting training data
    if random_transform:
        transform_generator = random_transform_generator(
            min_rotation=-0.05,
            max_rotation=0.05,
            min_translation=(-0.1, -0.1),
            max_translation=(0.1, 0.1),
            #min_shear=-0.1,
            #max_shear=0.1,
            min_scaling=(0.8, 0.8),
            max_scaling=(1.2, 1.2),
            flip_x_chance=0.5,
            #flip_y_chance=0.5,
        )
    else:
        transform_generator = random_transform_generator(flip_x_chance=0.5)
    train_generator = CSVGenerator(annotations,
                                   classes,
                                   transform_generator=transform_generator,
                                   **common_args)

    if val_annotations:
        validation_generator = CSVGenerator(val_annotations, classes,
                                            **common_args)
    else:
        validation_generator = None

    #train_generator, validation_generator = create_generators(args, backbone.preprocess_image)
    num_classes = 1  # change
    model = backbone.retinanet(num_classes, backbone='resnet50')
    training_model = model

    # prediction_model = retinanet_bbox(model=model)
    nms = True
    class_specific_filter = True
    name = 'retinanet-bbox'
    anchor_params = AnchorParameters.default
    # compute the anchors
    features = [
        model.get_layer(p_name).output
        for p_name in ['P3', 'P4', 'P5', 'P6', 'P7']
    ]

    anchor = [
        layers.Anchors(size=anchor_params.sizes[i],
                       stride=anchor_params.strides[i],
                       ratios=anchor_params.ratios,
                       scales=anchor_params.scales,
                       name='anchors_{}'.format(i))(f)
        for i, f in enumerate(features)
    ]
    anchors = keras.layers.Concatenate(axis=1, name='anchors')(anchor)
    # we expect the anchors, regression and classification values as first output
    regression = model.outputs[0]  # check
    classification = model.outputs[1]

    # "other" can be any additional output from custom submodels, by default this will be []
    other = model.outputs[2:]

    # apply predicted regression to anchors
    boxes = layers.RegressBoxes(name='boxes')([anchors, regression])
    boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes])

    # filter detections (apply NMS / score threshold / select top-k)
    detections = layers.FilterDetections(
        nms=nms,
        class_specific_filter=class_specific_filter,
        name='filtered_detections')([boxes, classification] + other)

    outputs = detections

    # construct the model
    prediction_model = keras.models.Model(inputs=model.inputs,
                                          outputs=outputs,
                                          name=name)

    # end of prediction_model = retinanet_bbox(model=model)

    # compile model
    training_model.compile(loss={
        'regression': losses.smooth_l1(),
        'classification': losses.focal()
    },
                           optimizer=keras.optimizers.SGD(lr=1e-2,
                                                          momentum=0.9,
                                                          decay=.0001,
                                                          nesterov=True,
                                                          clipnorm=1)
                           # , clipnorm=0.001)
                           )
    print(model.summary())
    # start of create_callbacks
    #callbacks = create_callbacks(model,training_model,prediction_model,validation_generator,args,)
    callbacks = []
    tensorboard_callback = None
    tensorboard_callback = keras.callbacks.TensorBoard(
        log_dir='',
        histogram_freq=0,
        batch_size=8,
        write_graph=True,
        write_grads=False,
        write_images=False,
        embeddings_freq=0,
        embeddings_layer_names=None,
        embeddings_metadata=None)
    callbacks.append(tensorboard_callback)
    evaluation = Evaluate(validation_generator,
                          tensorboard=tensorboard_callback,
                          weighted_average=False)
    evaluation = RedirectModel(evaluation, prediction_model)
    callbacks.append(evaluation)
    makedirs('./snapshots/')
    checkpoint = keras.callbacks.ModelCheckpoint(os.path.join(
        './snapshots/', '{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format(
            backbone='resnet50', dataset_type='csv')),
                                                 verbose=1,
                                                 save_best_only=False,
                                                 monitor="mAP",
                                                 mode='max')

    checkpoint = RedirectModel(checkpoint, model)
    callbacks.append(checkpoint)
    callbacks.append(
        keras.callbacks.ReduceLROnPlateau(monitor='loss',
                                          factor=0.9,
                                          patience=4,
                                          verbose=1,
                                          mode='auto',
                                          min_delta=0.0001,
                                          cooldown=0,
                                          min_lr=0))
    steps = 2500
    epochs = 25

    # start training
    history = training_model.fit(
        generator=train_generator,
        steps_per_epoch=steps,
        epochs=epochs,
        verbose=1,
        callbacks=callbacks,
    )

    timestr = time.strftime("%Y-%m-%d-%H%M")

    history_path = os.path.join(
        './snapshots/', '{timestr}_{backbone}.csv'.format(timestr=timestr,
                                                          backbone='resnet50',
                                                          dataset_type='csv'))
    pd.DataFrame(history.history).to_csv(history_path)