Exemple #1
0
def test(challenge,lim=None):
    meta,desi,times_f,resid_f,error_f = load(challenge,limit=int(lim))

    alphaab = alphamat(meta)

    print 'Working with {0} pulsars.'.format(len(meta))

    with timing('GW covariance matrix [recurring]'):
        cgw = Cgw_100ns(alphaab,times_f,-2.0/3.0,fL=1.0/500,approx_ksum=True)

    cgw2 = cgw.copy()
    with timing('Cgw interpolation'):
        cgw3 = 0.2 * cgw + 0.8 * cgw2

    with timing('PN covariance matrix'):
        cpn = Cpn(error_f)

    with timing('Design matrix'):
        gmat = Gdesi2(desi,meta)        # note this takes meta, not len(meta)

    with timing('Reduced data'):
        resid_f = N.dot(gmat.T,resid_f)

    with timing('Reduced Cpn'):
        cpn = blockmul(cpn,gmat,meta,blas=True)

    with timing('Reduced Cgw [recurring]'):
        cgw = blockmul(cgw,gmat,meta,blas=True)

    cgw2 = cgw.copy()
    with timing('Reduced-Cgw interpolation'):
        cgw3 = 0.2 * cgw + 0.8 * cgw2

    with timing('Likelihood [recurring]'):
        logl = logL(resid_f,cgw,cpn)
Exemple #2
0
def lnprob(x):
    """logL stub function for emcee. It needs to use global variables because otherwise
    multiprocessing.map will need to transmit big arrays to the slave processes."""
    global resid_f,cgw,cpn

    return logL(resid_f,cgw,cpn,A=x[0],n=1,cgwunit='100ns')