Exemple #1
0
    def load_simple(self, path):
        entryset = parsing.run_parser(path)

        data, size = [], 0
        invocab, outvocab = [], []

        for i, entry in enumerate(entryset):
            progress = round(float(i) / len(entryset), 2)
            print('Progress: {0}'.format(progress), end='   \r')
            try:
                # triples greater than 1
                if len(entry.modifiedtripleset) > 1:
                    # process source
                    tripleset = []
                    for i, triple in enumerate(entry.modifiedtripleset):
                        striple = triple.predicate + ' ' + triple.subject + ' ' + triple.object
                        tripleset.append((i, striple))
                    # given a fixed order by sorting the set of triples automatically (predicate - subject - object)
                    tripleset = sorted(tripleset, key=lambda x: x[1])
                    triples = [entry.modifiedtripleset[t[0]] for t in tripleset]

                    entitymap = {b:a for a, b in entry.entitymap_to_dict().items()}
                    source, _, entities = load.source(triples, entitymap, {})
                    invocab.extend(source)

                    targets = []
                    for lex in entry.lexEntries:
                        # process ordered tripleset
                        _, text, _ = load.snt_source(lex.orderedtripleset, entitymap, entities)
                        text = [w for w in text if w not in ['<SNT>', '</SNT>']]
                        trg_preds = [t[1] for t in utils.split_triples(text)]

                        target = { 'lid': lex.lid, 'comment': lex.comment, 'output': trg_preds }
                        targets.append(target)
                        outvocab.extend(trg_preds)

                    data.append({
                        'eid': entry.eid,
                        'category': entry.category,
                        'augmented': False,
                        'size': entry.size,
                        'source': source,
                        'targets': targets })
                    size += len(targets)
            except:
                print('Preprocessing error...')

        invocab.append('unk')
        outvocab.append('unk')

        invocab = list(set(invocab))
        outvocab = list(set(outvocab))
        vocab = { 'input': invocab, 'output': outvocab }

        print('Path:', path, 'Size: ', size)
        return data, vocab
Exemple #2
0
    def load(self, path, augment=True):
        entryset = parsing.run_parser(path)

        data, size = [], 0
        invocab, outvocab = [], []

        for i, entry in enumerate(entryset):
            progress = round(float(i) / len(entryset), 2)
            print('Progress: {0}'.format(progress), end='   \r')
            try:
                # process source
                entitymap = {
                    b: a
                    for a, b in entry.entitymap_to_dict().items()
                }
                source, _, entities = load.source(entry.modifiedtripleset,
                                                  entitymap, {})
                invocab.extend(source)

                targets = []
                for lex in entry.lexEntries:
                    # process ordered tripleset
                    text = self.tokenize(text=lex.text)

                    target = {
                        'lid': lex.lid,
                        'comment': lex.comment,
                        'output': text,
                        'text': lex.text.replace('@', ' ')
                    }
                    targets.append(target)
                    outvocab.extend(text)

                data.append({
                    'eid': entry.eid,
                    'category': entry.category,
                    'augmented': False,
                    'size': entry.size,
                    'source': source,
                    'targets': targets
                })
                size += len(targets)

                # choose the original order and N permutations such as N = len(tripleset)-1
                if augment:
                    triplesize = len(entry.modifiedtripleset)
                    perm = list(permutations(entry.modifiedtripleset))
                    perm = [load.source(src, entitymap, {}) for src in perm]
                    entitylist = [w[2] for w in perm]
                    perm = [w[0] for w in perm]

                    taken = []
                    # to augment the corpus, pick the minumum between the number of permutations - 1 or 49
                    X = min(len(perm) - 1, 49)
                    for _ in range(X):
                        found = False
                        while not found and triplesize != 1:
                            pos = randint(0, len(perm) - 1)
                            src, entities = perm[pos], entitylist[pos]

                            if pos not in taken and src != source:
                                taken.append(pos)
                                found = True

                                targets = []
                                for lex in entry.lexEntries:
                                    # process ordered tripleset
                                    text = self.tokenize(text=lex.text)

                                    target = {
                                        'lid': lex.lid,
                                        'comment': lex.comment,
                                        'output': text,
                                        'text': lex.text.replace('@', ' ')
                                    }
                                    targets.append(target)
                                    outvocab.extend(text)

                                data.append({
                                    'eid': entry.eid,
                                    'category': entry.category,
                                    'augmented': True,
                                    'size': entry.size,
                                    'source': src,
                                    'targets': targets
                                })
                                size += len(targets)
            except:
                print('Preprocessing error...')

        invocab.append('unk')
        outvocab.append('unk')

        invocab = list(set(invocab))
        outvocab = list(set(outvocab))
        vocab = {'input': invocab, 'output': outvocab}

        print('Path:', path, 'Size: ', size)
        return data, vocab
Exemple #3
0
    def load_index(self, path):
        entryset = parsing.run_parser(path)

        data, size = [], 0
        invocab, outvocab = [], []

        for i, entry in enumerate(entryset):
            progress = round(float(i) / len(entryset), 2)
            print('Progress: {0}'.format(progress), end='   \r')
            try:
                # triples greater than 1
                if len(entry.modifiedtripleset) > 1:
                    # process source
                    tripleset = []
                    for i, triple in enumerate(entry.modifiedtripleset):
                        striple = triple.predicate + ' ' + triple.subject + ' ' + triple.object
                        tripleset.append((i, striple))
                    # given a fixed order by sorting the set of triples automatically (predicate - subject - object)
                    tripleset = sorted(tripleset, key=lambda x: x[1])
                    triples = [
                        entry.modifiedtripleset[t[0]] for t in tripleset
                    ]

                    entitymap = {
                        b: a
                        for a, b in entry.entitymap_to_dict().items()
                    }
                    source, _, entities = load.source(triples, entitymap, {})
                    invocab.extend(source)

                    targets = []
                    for lex in entry.lexEntries:
                        # process ordered tripleset
                        trg_idx = []
                        orderedtripleset = [
                            item for sublist in lex.orderedtripleset
                            for item in sublist
                        ]
                        for sorted_triple in orderedtripleset:
                            for i, src_triple in enumerate(triples):
                                if sorted_triple.subject == src_triple.subject and \
                                                sorted_triple.predicate == src_triple.predicate and \
                                                sorted_triple.object == src_triple.object and str(i+1) not in trg_idx:
                                    trg_idx.append(str(i + 1))

                        target = {
                            'lid': lex.lid,
                            'comment': lex.comment,
                            'output': trg_idx
                        }
                        targets.append(target)
                        outvocab.extend(trg_idx)

                    data.append({
                        'eid': entry.eid,
                        'category': entry.category,
                        'augmented': False,
                        'size': entry.size,
                        'source': source,
                        'targets': targets
                    })
                    size += len(targets)
            except:
                print('Preprocessing error...')

        invocab.append('unk')
        outvocab.append('unk')

        invocab = list(set(invocab))
        outvocab = list(set(outvocab))
        vocab = {'input': invocab, 'output': outvocab}

        print('Path:', path, 'Size: ', size)
        return data, vocab