def load_simple(self, path): entryset = parsing.run_parser(path) data, size = [], 0 invocab, outvocab = [], [] for i, entry in enumerate(entryset): progress = round(float(i) / len(entryset), 2) print('Progress: {0}'.format(progress), end=' \r') try: # triples greater than 1 if len(entry.modifiedtripleset) > 1: # process source tripleset = [] for i, triple in enumerate(entry.modifiedtripleset): striple = triple.predicate + ' ' + triple.subject + ' ' + triple.object tripleset.append((i, striple)) # given a fixed order by sorting the set of triples automatically (predicate - subject - object) tripleset = sorted(tripleset, key=lambda x: x[1]) triples = [entry.modifiedtripleset[t[0]] for t in tripleset] entitymap = {b:a for a, b in entry.entitymap_to_dict().items()} source, _, entities = load.source(triples, entitymap, {}) invocab.extend(source) targets = [] for lex in entry.lexEntries: # process ordered tripleset _, text, _ = load.snt_source(lex.orderedtripleset, entitymap, entities) text = [w for w in text if w not in ['<SNT>', '</SNT>']] trg_preds = [t[1] for t in utils.split_triples(text)] target = { 'lid': lex.lid, 'comment': lex.comment, 'output': trg_preds } targets.append(target) outvocab.extend(trg_preds) data.append({ 'eid': entry.eid, 'category': entry.category, 'augmented': False, 'size': entry.size, 'source': source, 'targets': targets }) size += len(targets) except: print('Preprocessing error...') invocab.append('unk') outvocab.append('unk') invocab = list(set(invocab)) outvocab = list(set(outvocab)) vocab = { 'input': invocab, 'output': outvocab } print('Path:', path, 'Size: ', size) return data, vocab
def load(self, path, augment=True): entryset = parsing.run_parser(path) data, size = [], 0 invocab, outvocab = [], [] for i, entry in enumerate(entryset): progress = round(float(i) / len(entryset), 2) print('Progress: {0}'.format(progress), end=' \r') try: # process source entitymap = { b: a for a, b in entry.entitymap_to_dict().items() } source, _, entities = load.source(entry.modifiedtripleset, entitymap, {}) invocab.extend(source) targets = [] for lex in entry.lexEntries: # process ordered tripleset text = self.tokenize(text=lex.text) target = { 'lid': lex.lid, 'comment': lex.comment, 'output': text, 'text': lex.text.replace('@', ' ') } targets.append(target) outvocab.extend(text) data.append({ 'eid': entry.eid, 'category': entry.category, 'augmented': False, 'size': entry.size, 'source': source, 'targets': targets }) size += len(targets) # choose the original order and N permutations such as N = len(tripleset)-1 if augment: triplesize = len(entry.modifiedtripleset) perm = list(permutations(entry.modifiedtripleset)) perm = [load.source(src, entitymap, {}) for src in perm] entitylist = [w[2] for w in perm] perm = [w[0] for w in perm] taken = [] # to augment the corpus, pick the minumum between the number of permutations - 1 or 49 X = min(len(perm) - 1, 49) for _ in range(X): found = False while not found and triplesize != 1: pos = randint(0, len(perm) - 1) src, entities = perm[pos], entitylist[pos] if pos not in taken and src != source: taken.append(pos) found = True targets = [] for lex in entry.lexEntries: # process ordered tripleset text = self.tokenize(text=lex.text) target = { 'lid': lex.lid, 'comment': lex.comment, 'output': text, 'text': lex.text.replace('@', ' ') } targets.append(target) outvocab.extend(text) data.append({ 'eid': entry.eid, 'category': entry.category, 'augmented': True, 'size': entry.size, 'source': src, 'targets': targets }) size += len(targets) except: print('Preprocessing error...') invocab.append('unk') outvocab.append('unk') invocab = list(set(invocab)) outvocab = list(set(outvocab)) vocab = {'input': invocab, 'output': outvocab} print('Path:', path, 'Size: ', size) return data, vocab
def load_index(self, path): entryset = parsing.run_parser(path) data, size = [], 0 invocab, outvocab = [], [] for i, entry in enumerate(entryset): progress = round(float(i) / len(entryset), 2) print('Progress: {0}'.format(progress), end=' \r') try: # triples greater than 1 if len(entry.modifiedtripleset) > 1: # process source tripleset = [] for i, triple in enumerate(entry.modifiedtripleset): striple = triple.predicate + ' ' + triple.subject + ' ' + triple.object tripleset.append((i, striple)) # given a fixed order by sorting the set of triples automatically (predicate - subject - object) tripleset = sorted(tripleset, key=lambda x: x[1]) triples = [ entry.modifiedtripleset[t[0]] for t in tripleset ] entitymap = { b: a for a, b in entry.entitymap_to_dict().items() } source, _, entities = load.source(triples, entitymap, {}) invocab.extend(source) targets = [] for lex in entry.lexEntries: # process ordered tripleset trg_idx = [] orderedtripleset = [ item for sublist in lex.orderedtripleset for item in sublist ] for sorted_triple in orderedtripleset: for i, src_triple in enumerate(triples): if sorted_triple.subject == src_triple.subject and \ sorted_triple.predicate == src_triple.predicate and \ sorted_triple.object == src_triple.object and str(i+1) not in trg_idx: trg_idx.append(str(i + 1)) target = { 'lid': lex.lid, 'comment': lex.comment, 'output': trg_idx } targets.append(target) outvocab.extend(trg_idx) data.append({ 'eid': entry.eid, 'category': entry.category, 'augmented': False, 'size': entry.size, 'source': source, 'targets': targets }) size += len(targets) except: print('Preprocessing error...') invocab.append('unk') outvocab.append('unk') invocab = list(set(invocab)) outvocab = list(set(outvocab)) vocab = {'input': invocab, 'output': outvocab} print('Path:', path, 'Size: ', size) return data, vocab