Exemple #1
0
def check_orthonormal(basis1, basis2, basis3):
    """ Return True if bases are mutually orthogonal, False otherwise , does not indicate which criterion fails """
    orthogonal = round_small(vec_proj(basis1, basis2)) == 0 and round_small(
        vec_proj(basis1, basis3)) == 0 and round_small(vec_proj(
            basis2, basis3)) == 0
    # dbgLog(-1, round_small( vec_proj(basis1,basis2) )  , round_small( vec_proj(basis1,basis3) )  , round_small( vec_proj(basis2,basis3) ) )
    normal = eq(vec_mag(basis1), 1) and eq(vec_mag(basis2), 1) and eq(
        vec_mag(basis3), 1)
    # dbgLog(-1, vec_mag(basis1)  , vec_mag(basis2) , vec_mag(basis3) )
    return orthogonal and normal
Exemple #2
0
 def shortest_btn_vecs(v1, v2):
     """ Return the Quaternion representing the shortest rotation from vector 'v1' to vector 'v2' """
     #        print "DEBUG , Got vectors:     " , v1 , v2
     #        print "DEBUG , Crossed vectors: " , np.cross( v1 , v2 )
     #        print "DEBUG , Crossed unit vec:" , vec_unit( np.cross( v1 , v2 ) )
     #        print "DEBUG , Angle between:   " , vec_angle_between( v1 , v2 )
     angle = vec_angle_between(v1, v2)
     if eq(angle, 0.0):
         return Quaternion.no_turn_quat()
     elif eq(angle, pi):
         # If we are making a pi turn, then just pick any axis perpendicular to the opposing vectors and make the turn
         # The axis that is picked will result in different poses
         return Quaternion.k_rot_to_Quat(vec_unit(np.cross(v1, [1, 0, 0])),
                                         angle)
     else:
         return Quaternion.k_rot_to_Quat(vec_unit(np.cross(v1, v2)), angle)
Exemple #3
0
def joint_homog( pitch , q ): 
    """ Return the joint homogeneous transform matrix for a joint with 'pitch' and joint variable 'q' """
    # See page 135 of [3] for the homogeneous transformations for each type
    
    if eq( pitch , 0.0 ): # Revolute Joint : Implements pure rotation 
        E = z_trn( q )
        r = [ 0 , 0 , 0 ]
    
    elif pitch == infty: #- Prismatic Joint : Implements pure translation
        E = np.eye( 3 )
        r = [ 0 , 0 , q ]

    else: # --------------- Helical Joint   : Implements a screwing motion
        E = z_trn( q )
        r = [ 0 , 0 , pitch * q ]

    return homog_xform( E , r )
Exemple #4
0
def joint_spatl( pitch , q ): # Featherstone: jcalc
    """ Return the joint spatial coordinate transform and subspace matrix for a joint with 'pitch' and joint variable 'q' """
    # NOTE : This function is for transform coordinate bases , not positions
    
    if eq( pitch , 0.0 ): # Revolute Joint : Implements pure rotation 
        E = z_trn( q )
#        E = z_rot( q )
        r = [ 0 , 0 , 0 ]
        s_i = [ 0 , 0 , 1 , 0 , 0 , 0 ]
        XJ_s = sp_rot_xfrm( E )
#        XJ_s = sp_rot_xfrm_alt( E )
        
    elif pitch == infty: #- Prismatic Joint : Implements pure translation
        E = np.eye( 3 ); r = [ 0 , 0 , q ]
        s_i = [ 0 , 0 , 0 , 0 , 0 , 1 ]
        XJ_s = sp_trn_xfrm_mtn( r )
        
    else: # --------------- Helical Joint   : Implements a screwing motion
        E = z_trn( q ); r = [ 0 , 0 , pitch * q ]
        s_i = [ 0 , 0 , 1 , 0 , 0 , pitch ]
        XJ_s = np.dot( sp_rot_xfrm( E ) , sp_trn_xfrm_mtn( r ) )
    
    return XJ_s , s_i 
Exemple #5
0
 def eq(p, q):
     """ Determine if two quaterions are equal enough """
     return eq(p.sclr, q.sclr) and vec_eq(p._vctr, q._vctr)