def finalize(self): subplot = plt.subplot(self.options.rows, self.options.columns, self.subnumber) plt.legend() if self.title != None: plt.title(self.title, fontsize=self.title_fontsize) pass subplot.set_xlabel(self.xlabel, fontsize=self.xlabel_fontsize) subplot.set_ylabel(self.ylabel, fontsize=self.ylabel_fontsize) for tick in subplot.xaxis.get_major_ticks(): tick.label.set_fontsize(self.xaxis_fontsize) pass for tick in subplot.yaxis.get_major_ticks(): tick.label.set_fontsize(self.yaxis_fontsize) pass try: for tick in subplot.zaxis.get_major_ticks(): tick.label.set_fontsize(self.zaxis_fontsize) pass pass except AttributeError: pass subplot.xaxis.set_major_formatter(FormatStrFormatter( self.xaxis_format)) subplot.yaxis.set_major_formatter(FormatStrFormatter( self.yaxis_format)) try: subplot.zaxis.set_major_formatter( FormatStrFormatter(self.zaxis_format)) pass except AttributeError: pass plt.xticks( np.linspace(float(self.xticks_min), float(self.xticks_max), num=int(self.xticks))) plt.yticks( np.linspace(float(self.yticks_min), float(self.yticks_max), num=int(self.yticks))) try: plt.linspace( np.arange(float(self.zticks_min), float(self.zticks_max), num=int(self.zticks))) pass except AttributeError: pass subplot.set_xlim([float(self.xmin), float(self.xmax)]) subplot.set_ylim([float(self.ymin), float(self.ymax)]) try: subplot.set_zlabel(self.zlabel, fontsize=self.zlabel_fontsize) pass except AttributeError: pass pass
def demo(): """ Show the available interface functions and the corresponding probability density functions. """ # Plot the cdf and pdf import matplotlib.pyplot as plt w = 10 perf = Erf(w) ptanh = Tanh(w) plinear = Linear(2.35 * w) #arrowprops=dict(arrowstyle='wedge', connectionstyle='arc3', fc='0.6') #bbox=dict(boxstyle='round', fc='0.8') z = plt.linspace(-3 * w, 3 * w, 800) plt.subplot(211) plt.plot(z, perf.cdf(z)) plt.plot(z, ptanh.cdf(z)) plt.plot(z, plinear.cdf(z)) plt.axvline(w, linewidth=2) plt.annotate('1-sigma', xy=(w * 1.1, 0.2)) plt.legend(['erf', 'tanh']) plt.grid(True) plt.subplot(212) plt.plot(z, perf.pdf(z)) plt.plot(z, ptanh.pdf(z)) plt.plot(z, plinear.pdf(z)) plt.axvline(w, linewidth=2) plt.annotate('1-sigma', xy=(w * 1.1, 0.2)) plt.legend(['erf', 'tanh', 'linear']) plt.grid(True)
def test_pp(): coef = np.array([[1, 1], [0, 0]]) # linear from 0 to 2 @UnusedVariable coef = np.array([[1, 1], [1, 1], [0, 2]]) # quadratic from 0 to 1 and 1 to 2. dc = pl.polyder(coef, 1) c2 = pl.polyint(dc, 1) #@UnusedVariable breaks = [0, 1, 2] pp = PPform(coef, breaks) pp(0.5) pp(1) pp(1.5) dpp = pp.derivative() import pylab as plb x = plb.linspace(-1, 3) plb.plot(x, pp(x), x, dpp(x), '.') plb.show()
def test_pp(): coef = np.array([[1, 1], [0, 0]]) # linear from 0 to 2 @UnusedVariable # quadratic from 0 to 1 and 1 to 2. coef = np.array([[1, 1], [1, 1], [0, 2]]) dc = pl.polyder(coef, 1) c2 = pl.polyint(dc, 1) # @UnusedVariable breaks = [0, 1, 2] pp = PPform(coef, breaks) pp(0.5) pp(1) pp(1.5) dpp = pp.derivative() import pylab as plb x = plb.linspace(-1, 3) plb.plot(x, pp(x), x, dpp(x), '.') plb.show()
def demo_tanh_to_erf(): """ Show the available interface functions and the corresponding probability density functions. """ # Plot the cdf and pdf import matplotlib.pyplot as plt w = 10 ws = w * Tanh.C / Tanh.Cfwhm ptanh = Tanh.as_fwhm(w) perf = Erf(ws) z = plt.linspace(-2 * w, 2 * w, 800) plt.subplot(211) plt.plot(z, perf.cdf(z)) plt.plot(z, ptanh.cdf(z)) plt.title("""FWHM tanh -> 1-sigma erf scale by atanh(erf(1/sqrt(2))) / (2 acosh(sqrt(2)))""") plt.legend(['erf', 'tanh']) plt.grid(True) plt.subplot(212) plt.plot(z, perf.pdf(z), 'b') plt.plot(z, ptanh.pdf(z), 'g') plt.legend(['erf', 'tanh']) # Show fwhm arrowprops = dict(arrowstyle='wedge', connectionstyle='arc3', fc='0.6') bbox = dict(boxstyle='round', fc='0.8') plt.annotate('erf 1-sigma', xy=(ws, perf.pdf(ws)), xytext=(-2, 20), textcoords="offset points", arrowprops=arrowprops, bbox=bbox) plt.annotate('tanh FWHM', xy=(w / 2, ptanh.pdf(0) / 2), xytext=(-58, -35), textcoords="offset points", arrowprops=arrowprops, bbox=bbox) plt.grid(True)
def demo_fwhm(): """ Show the available interface functions and the corresponding probability density functions. """ # Plot the cdf and pdf import matplotlib.pyplot as plt w = 10 perf = Erf.as_fwhm(w) ptanh = Tanh.as_fwhm(w) z = plt.linspace(-w, w, 800) plt.subplot(211) plt.plot(z, perf.cdf(z)) plt.plot(z, ptanh.cdf(z)) plt.legend(['erf', 'tanh']) plt.grid(True) plt.subplot(212) plt.plot(z, perf.pdf(z), 'b') plt.plot(z, ptanh.pdf(z), 'g') plt.legend(['erf', 'tanh']) # Show fwhm arrowprops = dict(arrowstyle='wedge', connectionstyle='arc3', fc='0.6') bbox = dict(boxstyle='round', fc='0.8') plt.annotate('erf FWHM', xy=(w / 2, perf.pdf(0) / 2), xytext=(-35, 10), textcoords="offset points", arrowprops=arrowprops, bbox=bbox) plt.annotate('tanh FWHM', xy=(w / 2, ptanh.pdf(0) / 2), xytext=(-35, -35), textcoords="offset points", arrowprops=arrowprops, bbox=bbox) plt.grid(True)
def histogram(y,bins=50,plot=True,label=None): N,bins=numpyhist(y,bins) dx=bins[1]-bins[0] if dx==0.0: # all in 1 bin! val=bins[0] bins=plt.linspace(val-abs(val),val+abs(val),50) N,bins=numpyhist(y,bins) dx=bins[1]-bins[0] x=bins[0:-1]+(bins[1]-bins[0])/2.0 y=N*1.0/sum(N)/dx if plot: plt.plot(x,y,'o-',label=label) yl=plt.gca().get_ylim() plt.gca().set_ylim([0,yl[1]]) xl=plt.gca().get_xlim() if xl[0]<=0 and xl[0]>=0: plt.plot([0,0],[0,yl[1]],'k--') return x,y
sigma_2 = 14 delta_2 = sigma_2 runtime_jacobi = [] runtime_arma = [] n = [] eigenval_arma = [] eigenval_jacobi = [] for f in x: f = runtimes(f) n.append(comprehend(comprehend(boltzmanns_constant(f[0][2:])))) fonttype = "Armadillo" runtime_arma.append(deappend(comprehend(boltzmanns_constant(f[1][13:])))) runtime_jacobi.append(deappend(comprehend(boltzmanns_constant(f[2][15:])))) eigenval_arma.append(deappend(comprehend(boltzmanns_constant(f[3][14:])))) eigenval_jacobi.append(deappend(comprehend(boltzmanns_constant( f[4][16:])))) fontttype = "Jacobi" x.close() n = scipy_constants(n) runtime_arma = scipy_constants(runtime_arma) runtime_jacobi = scipy_constants(runtime_jacobi) eigenval_arma = scipy_constants(eigenval_arma) eigenval_jacobi = scipy_constants(eigenval_jacobi) linspace(n, return_(runtime_arma), label=fonttype) linspace(n, return_(runtime_jacobi), label=fontttype) compress(sigma_1, Fontsize=sigma_2) commpress(delta_1, Fontsize=delta_2) hamiltonian() arma(out)