Exemple #1
0
  def testSingleImageGroundtruthExport(self):
    masks = np.array(
        [[[1, 1,], [1, 1]],
         [[0, 0], [0, 1]],
         [[0, 0], [0, 0]]], dtype=np.uint8)
    boxes = np.array([[0, 0, 1, 1],
                      [0, 0, .5, .5],
                      [.5, .5, 1, 1]], dtype=np.float32)
    coco_boxes = np.array([[0, 0, 1, 1],
                           [0, 0, .5, .5],
                           [.5, .5, .5, .5]], dtype=np.float32)
    classes = np.array([1, 2, 3], dtype=np.int32)
    is_crowd = np.array([0, 1, 0], dtype=np.int32)
    next_annotation_id = 1
    expected_counts = ['04', '31', '4']

    # Tests exporting without passing in is_crowd (for backward compatibility).
    coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
        image_id='first_image',
        category_id_set=set([1, 2, 3]),
        next_annotation_id=next_annotation_id,
        groundtruth_boxes=boxes,
        groundtruth_classes=classes,
        groundtruth_masks=masks)
    for i, annotation in enumerate(coco_annotations):
      self.assertEqual(annotation['segmentation']['counts'],
                       expected_counts[i])
      self.assertTrue(np.all(np.equal(mask.decode(
          annotation['segmentation']), masks[i])))
      self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
      self.assertEqual(annotation['image_id'], 'first_image')
      self.assertEqual(annotation['category_id'], classes[i])
      self.assertEqual(annotation['id'], i + next_annotation_id)

    # Tests exporting with is_crowd.
    coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
        image_id='first_image',
        category_id_set=set([1, 2, 3]),
        next_annotation_id=next_annotation_id,
        groundtruth_boxes=boxes,
        groundtruth_classes=classes,
        groundtruth_masks=masks,
        groundtruth_is_crowd=is_crowd)
    for i, annotation in enumerate(coco_annotations):
      self.assertEqual(annotation['segmentation']['counts'],
                       expected_counts[i])
      self.assertTrue(np.all(np.equal(mask.decode(
          annotation['segmentation']), masks[i])))
      self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
      self.assertEqual(annotation['image_id'], 'first_image')
      self.assertEqual(annotation['category_id'], classes[i])
      self.assertEqual(annotation['iscrowd'], is_crowd[i])
      self.assertEqual(annotation['id'], i + next_annotation_id)
    def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
        """Adds groundtruth for a single image to be used for evaluation.

    If the image has already been added, a warning is logged, and groundtruth is
    ignored.

    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        InputDataFields.groundtruth_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        InputDataFields.groundtruth_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed groundtruth classes for the boxes.
        InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
          shape [num_boxes] containing iscrowd flag for groundtruth boxes.
    """
        if image_id in self._image_ids:
            tf.logging.warning(
                'Ignoring ground truth with image id %s since it was '
                'previously added', image_id)
            return

        groundtruth_is_crowd = groundtruth_dict.get(
            standard_fields.InputDataFields.groundtruth_is_crowd)
        # Drop groundtruth_is_crowd if empty tensor.
        if groundtruth_is_crowd is not None and not groundtruth_is_crowd.shape[
                0]:
            groundtruth_is_crowd = None

        self._groundtruth_list.extend(
            coco_tools.ExportSingleImageGroundtruthToCoco(
                image_id=image_id,
                next_annotation_id=self._annotation_id,
                category_id_set=self._category_id_set,
                groundtruth_boxes=groundtruth_dict[
                    standard_fields.InputDataFields.groundtruth_boxes],
                groundtruth_classes=groundtruth_dict[
                    standard_fields.InputDataFields.groundtruth_classes],
                groundtruth_is_crowd=groundtruth_is_crowd))
        self._annotation_id += groundtruth_dict[
            standard_fields.InputDataFields.groundtruth_boxes].shape[0]
        # Boolean to indicate whether a detection has been added for this image.
        self._image_ids[image_id] = False
    def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
        """Adds groundtruth for a single image to be used for evaluation.

    If the image has already been added, a warning is logged, and groundtruth is
    ignored.

    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        InputDataFields.groundtruth_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        InputDataFields.groundtruth_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed groundtruth classes for the boxes.
        InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
          [num_boxes, image_height, image_width] containing groundtruth masks
          corresponding to the boxes. The elements of the array must be in
          {0, 1}.
    """
        if image_id in self._image_id_to_mask_shape_map:
            tf.logging.warning(
                'Ignoring ground truth with image id %s since it was '
                'previously added', image_id)
            return

        groundtruth_instance_masks = groundtruth_dict[
            standard_fields.InputDataFields.groundtruth_instance_masks]
        _check_mask_type_and_value(
            standard_fields.InputDataFields.groundtruth_instance_masks,
            groundtruth_instance_masks)
        self._groundtruth_list.extend(
            coco_tools.ExportSingleImageGroundtruthToCoco(
                image_id=image_id,
                next_annotation_id=self._annotation_id,
                category_id_set=self._category_id_set,
                groundtruth_boxes=groundtruth_dict[
                    standard_fields.InputDataFields.groundtruth_boxes],
                groundtruth_classes=groundtruth_dict[
                    standard_fields.InputDataFields.groundtruth_classes],
                groundtruth_masks=groundtruth_instance_masks))
        self._annotation_id += groundtruth_dict[
            standard_fields.InputDataFields.groundtruth_boxes].shape[0]
        self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[
            standard_fields.InputDataFields.groundtruth_instance_masks].shape