def testSingleImageGroundtruthExport(self): masks = np.array( [[[1, 1,], [1, 1]], [[0, 0], [0, 1]], [[0, 0], [0, 0]]], dtype=np.uint8) boxes = np.array([[0, 0, 1, 1], [0, 0, .5, .5], [.5, .5, 1, 1]], dtype=np.float32) coco_boxes = np.array([[0, 0, 1, 1], [0, 0, .5, .5], [.5, .5, .5, .5]], dtype=np.float32) classes = np.array([1, 2, 3], dtype=np.int32) is_crowd = np.array([0, 1, 0], dtype=np.int32) next_annotation_id = 1 expected_counts = ['04', '31', '4'] # Tests exporting without passing in is_crowd (for backward compatibility). coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( image_id='first_image', category_id_set=set([1, 2, 3]), next_annotation_id=next_annotation_id, groundtruth_boxes=boxes, groundtruth_classes=classes, groundtruth_masks=masks) for i, annotation in enumerate(coco_annotations): self.assertEqual(annotation['segmentation']['counts'], expected_counts[i]) self.assertTrue(np.all(np.equal(mask.decode( annotation['segmentation']), masks[i]))) self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) self.assertEqual(annotation['image_id'], 'first_image') self.assertEqual(annotation['category_id'], classes[i]) self.assertEqual(annotation['id'], i + next_annotation_id) # Tests exporting with is_crowd. coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco( image_id='first_image', category_id_set=set([1, 2, 3]), next_annotation_id=next_annotation_id, groundtruth_boxes=boxes, groundtruth_classes=classes, groundtruth_masks=masks, groundtruth_is_crowd=is_crowd) for i, annotation in enumerate(coco_annotations): self.assertEqual(annotation['segmentation']['counts'], expected_counts[i]) self.assertTrue(np.all(np.equal(mask.decode( annotation['segmentation']), masks[i]))) self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i]))) self.assertEqual(annotation['image_id'], 'first_image') self.assertEqual(annotation['category_id'], classes[i]) self.assertEqual(annotation['iscrowd'], is_crowd[i]) self.assertEqual(annotation['id'], i + next_annotation_id)
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. If the image has already been added, a warning is logged, and groundtruth is ignored. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. InputDataFields.groundtruth_is_crowd (optional): integer numpy array of shape [num_boxes] containing iscrowd flag for groundtruth boxes. """ if image_id in self._image_ids: tf.logging.warning( 'Ignoring ground truth with image id %s since it was ' 'previously added', image_id) return groundtruth_is_crowd = groundtruth_dict.get( standard_fields.InputDataFields.groundtruth_is_crowd) # Drop groundtruth_is_crowd if empty tensor. if groundtruth_is_crowd is not None and not groundtruth_is_crowd.shape[ 0]: groundtruth_is_crowd = None self._groundtruth_list.extend( coco_tools.ExportSingleImageGroundtruthToCoco( image_id=image_id, next_annotation_id=self._annotation_id, category_id_set=self._category_id_set, groundtruth_boxes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes], groundtruth_classes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_classes], groundtruth_is_crowd=groundtruth_is_crowd)) self._annotation_id += groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes].shape[0] # Boolean to indicate whether a detection has been added for this image. self._image_ids[image_id] = False
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. If the image has already been added, a warning is logged, and groundtruth is ignored. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape [num_boxes, image_height, image_width] containing groundtruth masks corresponding to the boxes. The elements of the array must be in {0, 1}. """ if image_id in self._image_id_to_mask_shape_map: tf.logging.warning( 'Ignoring ground truth with image id %s since it was ' 'previously added', image_id) return groundtruth_instance_masks = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_instance_masks] _check_mask_type_and_value( standard_fields.InputDataFields.groundtruth_instance_masks, groundtruth_instance_masks) self._groundtruth_list.extend( coco_tools.ExportSingleImageGroundtruthToCoco( image_id=image_id, next_annotation_id=self._annotation_id, category_id_set=self._category_id_set, groundtruth_boxes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes], groundtruth_classes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_classes], groundtruth_masks=groundtruth_instance_masks)) self._annotation_id += groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes].shape[0] self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_instance_masks].shape