Exemple #1
0
 def __init__(self, num_classes, num_boxes, neg_pre_positive, batch_size):
     super(MultiBoxLoss, self).__init__()
     self.num_classes = num_classes
     self.num_boxes = num_boxes
     self.neg_pre_positive = neg_pre_positive
     self.notequal = P.NotEqual()
     self.less = P.Less()
     self.tile = P.Tile()
     self.reduce_sum = P.ReduceSum()
     self.reduce_mean = P.ReduceMean()
     self.expand_dims = P.ExpandDims()
     self.smooth_l1_loss = P.SmoothL1Loss()
     self.cross_entropy = SoftmaxCrossEntropyWithLogits()
     self.maximum = P.Maximum()
     self.minimum = P.Minimum()
     self.sort_descend = P.TopK(True)
     self.sort = P.TopK(True)
     self.gather = P.GatherNd()
     self.max = P.ReduceMax()
     self.log = P.Log()
     self.exp = P.Exp()
     self.concat = P.Concat(axis=1)
     self.reduce_sum2 = P.ReduceSum(keep_dims=True)
     self.idx = Tensor(
         np.reshape(np.arange(batch_size * num_boxes), (-1, 1)), ms.int32)
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 use_sigmoid_cls,
                 target_means=(.0, .0, .0, .0),
                 target_stds=(1.0, 1.0, 1.0, 1.0)
                 ):
        super(Proposal, self).__init__()
        cfg = config
        self.batch_size = batch_size
        self.num_classes = num_classes
        self.target_means = target_means
        self.target_stds = target_stds
        self.use_sigmoid_cls = config.use_sigmoid_cls

        if self.use_sigmoid_cls:
            self.cls_out_channels = 1
            self.activation = P.Sigmoid()
            self.reshape_shape = (-1, 1)
        else:
            self.cls_out_channels = num_classes
            self.activation = P.Softmax(axis=1)
            self.reshape_shape = (-1, 2)

        if self.cls_out_channels <= 0:
            raise ValueError('num_classes={} is too small'.format(num_classes))

        self.num_pre = cfg.rpn_proposal_nms_pre
        self.min_box_size = cfg.rpn_proposal_min_bbox_size
        self.nms_thr = cfg.rpn_proposal_nms_thr
        self.nms_post = cfg.rpn_proposal_nms_post
        self.nms_across_levels = cfg.rpn_proposal_nms_across_levels
        self.max_num = cfg.rpn_proposal_max_num

        # Op Define
        self.squeeze = P.Squeeze()
        self.reshape = P.Reshape()
        self.cast = P.Cast()

        self.feature_shapes = cfg.feature_shapes

        self.transpose_shape = (1, 2, 0)

        self.decode = BoundingBoxDecode()

        self.nms = P.NMSWithMask(self.nms_thr)
        self.concat_axis0 = P.Concat(axis=0)
        self.concat_axis1 = P.Concat(axis=1)
        self.split = P.Split(axis=1, output_num=5)
        self.min = P.Minimum()
        self.gatherND = P.GatherNd()
        self.slice = P.Slice()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()
        self.tile = P.Tile()
        self.set_train_local(config, training=True)

        self.multi_10 = Tensor(10.0, mstype.float16)
Exemple #3
0
    def __init__(self,
                 probs=None,
                 seed=None,
                 dtype=mstype.int32,
                 name="Categorical"):
        param = dict(locals())
        param['param_dict'] = {'probs': probs}
        valid_dtype = mstype.uint_type + mstype.int_type + mstype.float_type
        Validator.check_type_name("dtype", dtype, valid_dtype,
                                  type(self).__name__)
        super(Categorical, self).__init__(seed, dtype, name, param)

        self._probs = self._add_parameter(probs, 'probs')
        if self.probs is not None:
            check_rank(self.probs)
            check_prob(self.probs)
            check_sum_equal_one(probs)

            # update is_scalar_batch and broadcast_shape
            # drop one dimension
            if self.probs.shape[:-1] == ():
                self._is_scalar_batch = True
            self._broadcast_shape = self._broadcast_shape[:-1]

        self.argmax = P.ArgMaxWithValue(axis=-1)
        self.broadcast = broadcast_to
        self.cast = P.Cast()
        self.clip_by_value = C.clip_by_value
        self.concat = P.Concat(-1)
        self.cumsum = P.CumSum()
        self.dtypeop = P.DType()
        self.exp = exp_generic
        self.expand_dim = P.ExpandDims()
        self.fill = P.Fill()
        self.gather = P.GatherNd()
        self.greater = P.Greater()
        self.issubclass = P.IsSubClass()
        self.less = P.Less()
        self.log = log_generic
        self.log_softmax = P.LogSoftmax()
        self.logicor = P.LogicalOr()
        self.logicand = P.LogicalAnd()
        self.multinomial = P.Multinomial(seed=self.seed)
        self.reshape = P.Reshape()
        self.reduce_sum = P.ReduceSum(keep_dims=True)
        self.select = P.Select()
        self.shape = P.Shape()
        self.softmax = P.Softmax()
        self.squeeze = P.Squeeze()
        self.squeeze_first_axis = P.Squeeze(0)
        self.squeeze_last_axis = P.Squeeze(-1)
        self.square = P.Square()
        self.transpose = P.Transpose()
        self.is_nan = P.IsNan()

        self.index_type = mstype.int32
        self.nan = np.nan
Exemple #4
0
def test_case2_indices_to_matrix():
    op = P.GatherNd()
    op_wrapper = OpNetWrapper(op)

    indices = Tensor(np.array([[1], [0]]), mindspore.int32)
    params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32)
    outputs = op_wrapper(params, indices)
    print(outputs)
    expected = [[2, 3], [0, 1]]
    assert np.allclose(outputs.asnumpy(), np.array(expected))
Exemple #5
0
def test_case1_basic_func():
    op = P.GatherNd()
    op_wrapper = OpNetWrapper(op)

    indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
    params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32)
    outputs = op_wrapper(params, indices)
    print(outputs)
    expected = [0, 3]
    assert np.allclose(outputs.asnumpy(), np.array(expected))
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSample, self).__init__()
        cfg = config
        self.batch_size = batch_size

        self.neg_iou_thr = Tensor(cfg.neg_iou_thr, mstype.float16)
        self.pos_iou_thr = Tensor(cfg.pos_iou_thr, mstype.float16)
        self.min_pos_iou = Tensor(cfg.min_pos_iou, mstype.float16)
        self.zero_thr = Tensor(0.0, mstype.float16)

        self.num_bboxes = num_bboxes
        self.num_gts = cfg.num_gts
        self.num_expected_pos = cfg.num_expected_pos
        self.num_expected_neg = cfg.num_expected_neg
        self.add_gt_as_proposals = add_gt_as_proposals

        if self.add_gt_as_proposals:
            self.label_inds = Tensor(np.arange(1, self.num_gts + 1))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = BoundingBoxEncode()
        self.scatterNdUpdate = P.ScatterNdUpdate()
        self.scatterNd = P.ScatterNd()
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()
        self.zeros_like = P.ZerosLike()

        self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_zeros = Tensor(np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool))
        self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16))
        self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16))
        self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16))
        self.print = P.Print()
Exemple #7
0
def test_case4():
    op = P.GatherNd()
    op_wrapper = OpNetWrapper(op)

    indices = Tensor(np.array([[0, 1], [1, 0]]), mindspore.int32)  # (2, 2)
    params = Tensor(np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]),
                    mindspore.float32)  # (2, 2, 2)
    outputs = op_wrapper(params, indices)
    print(outputs)
    expected = [[2, 3], [4, 5]]  # (2, 2)
    assert np.allclose(outputs.asnumpy(), np.array(expected))
Exemple #8
0
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)):
        super(RcnnCls, self).__init__()
        cfg = config
        self.rcnn_loss_cls_weight = Tensor(
            np.array(cfg.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(
            np.array(cfg.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels
        self.train_batch_size = batch_size
        self.test_batch_size = cfg.test_batch_size

        self.fpn_cls = FpnCls(self.in_channels, self.rcnn_fc_out_channels,
                              self.num_classes, cfg.roi_layer["out_size"])
        self.relu = P.ReLU()
        self.logicaland = P.LogicalAnd()
        self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0)
        self.loss_mask = P.SigmoidCrossEntropyWithLogits()
        self.reshape = P.Reshape()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.gather = P.GatherNd()
        self.argmax = P.ArgMaxWithValue(axis=1)

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.value = Tensor(1.0, mstype.float16)

        self.num_bboxes = (cfg.num_expected_pos_stage2 +
                           cfg.num_expected_neg_stage2) * batch_size

        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes, ))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))

        self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size
Exemple #9
0
 def __init__(self, config):
     super(LabelSmoothedCrossEntropyCriterion, self).__init__()
     self.vocab_size = config.vocab_size
     self.batch_size = config.batch_size
     self.smoothing = 0.1
     self.confidence = 0.9
     self.last_idx = (-1,)
     self.reduce_sum = P.ReduceSum()
     self.reduce_mean = P.ReduceMean()
     self.reshape = P.Reshape()
     self.neg = P.Neg()
     self.cast = P.Cast()
     self.index_ids = Tensor(np.arange(config.batch_size * config.max_decode_length).reshape((-1, 1)), mstype.int32)
     self.gather_nd = P.GatherNd()
     self.expand = P.ExpandDims()
     self.concat = P.Concat(axis=-1)
    def _get_real_word(self, select_word, real_word_index):
        """
        Get word index in UNSORTED(logits generated from GPT2Model without passing through a TopKTopPFilter) ids and logits.
        """

        # mindspore.ops.Gather is supported in MindSpore v.1.0 on Ascend
        if self.device_target == "Ascend" or self.device_target == "GPU":
            select_word_np = select_word.asnumpy()
            range_index = np.arange(0, self.batch_size)
            select_word_merge = np.array([[index, word] for index, word in zip(range_index, select_word_np)], dtype=int)
            word_index_2D = Tensor(select_word_merge, dtype=mstype.int32)
            real_selected_word_ids = P.GatherNd()( real_word_index,word_index_2D)
            #Tensor shape: (batch_size,)
        else:
            raise NotImplementedError('CPU and other backend types have not been supported yet')

        return real_selected_word_ids
Exemple #11
0
 def __init__(self,
              probs=None,
              logits=None,
              seed=None,
              dtype=mstype.int32,
              name="Categorical"):
     param = dict(locals())
     valid_dtype = mstype.int_type
     check_type(dtype, valid_dtype, "Categorical")
     super(Categorical, self).__init__(seed, dtype, name, param)
     if (probs is None) == (logits is None):
         raise_probs_logits_error()
     self.reduce_sum = P.ReduceSum(keep_dims=True)
     self.reduce_sum1 = P.ReduceSum(keep_dims=False)
     self.log = P.Log()
     self.exp = P.Exp()
     self.shape = P.Shape()
     self.reshape = P.Reshape()
     self.div = P.RealDiv()
     self.size = P.Size()
     self.mutinomial = P.Multinomial(seed=self.seed)
     self.cast = P.Cast()
     self.expandim = P.ExpandDims()
     self.gather = P.GatherNd()
     self.concat = P.Concat(-1)
     self.transpose = P.Transpose()
     if probs is not None:
         self._probs = cast_to_tensor(probs, mstype.float32)
         input_sum = self.reduce_sum(self._probs, -1)
         self._probs = self.div(self._probs, input_sum)
         self._logits = probs_to_logits(self._probs)
         self._param = self._probs
     else:
         self._logits = cast_to_tensor(logits, mstype.float32)
         input_sum = self.reduce_sum(self.exp(self._logits), -1)
         self._logits = self._logits - self.log(input_sum)
         self._probs = logits_to_probs(self._logits)
         self._param = self._logits
     self._num_events = self.shape(self._param)[-1]
     self._param2d = self.reshape(self._param, (-1, self._num_events))
     self._batch_shape = self.shape(self._param)[:-1]
     self._batch_shape_n = (1, ) * len(self._batch_shape)
Exemple #12
0
    def test_mode_init(self, config):
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(self.dtype))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(self.dtype) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num
Exemple #13
0
    def get_pixel_value(self, img, x, y):
        """
        Utility function to get pixel value for coordinate
        vectors x and y from a  4D tensor image.

        Input
        -----
        - img: tensor of shape (B, H, W, C)
        - x: flattened tensor of shape (B*H*W,)
        - y: flattened tensor of shape (B*H*W,)

        Returns
        -------
        - output: tensor of shape (B, H, W, C)
        """
        shape = P.Shape()
        img_shape = shape(x)
        batch_size = img_shape[0]
        height = img_shape[1]
        width = img_shape[2]
        img[:, 0, :, :] = self.zero
        img[:, height - 1, :, :] = self.zero
        img[:, :, 0, :] = self.zero
        img[:, :, width - 1, :] = self.zero

        tile = P.Tile()
        batch_idx = P.Slice()(self.batch_idx, (0, 0, 0), (batch_size, 1, 1))
        b = tile(batch_idx, (1, height, width))

        expand_dims = P.ExpandDims()
        b = expand_dims(b, 3)
        x = expand_dims(x, 3)
        y = expand_dims(y, 3)

        concat = P.Concat(3)
        indices = concat((b, y, x))
        cast = P.Cast()
        indices = cast(indices, mindspore.int32)
        gather_nd = P.GatherNd()

        return cast(gather_nd(img, indices), mindspore.float32)
Exemple #14
0
 def __init__(self,
              probs=None,
              logits=None,
              seed=0,
              dtype=mstype.int32,
              name="Categorical"):
     param = dict(locals())
     super(Categorical, self).__init__(seed, dtype, name, param)
     if (probs is None) == (logits is None):
         raise ValueError(
             "Either 'prob' or 'logits' must be specified, but not both.")
     self.reduce_sum = P.ReduceSum(keep_dims=True)
     self.log = P.Log()
     self.exp = P.Exp()
     self.shape = P.Shape()
     self.reshape = P.Reshape()
     self.div = P.RealDiv()
     self.size = P.Size()
     self.mutinomial = P.Multinomial(seed=seed)
     self.cast = P.Cast()
     self.expandim = P.ExpandDims()
     self.gather = P.GatherNd()
     self.concat = P.Concat(-1)
     if probs is not None:
         self._probs = cast_to_tensor(probs, mstype.float32)
         input_sum = self.reduce_sum(self._probs, -1)
         self._probs = self.div(self._probs, input_sum)
         self._logits = probs_to_logits(self._probs)
         self._param = self._probs
     else:
         self._logits = cast_to_tensor(logits, mstype.float32)
         input_sum = self.reduce_sum(self.exp(self._logits), -1)
         self._logits = self._logits - self.log(input_sum)
         self._probs = logits_to_probs(self._logits)
         self._param = self._logits
     self._num_events = self.shape(self._param)[-1]
     self._param2d = self.reshape(self._param, (-1, self._num_events))
     self._batch_shape = self.shape(self._param2d)[0]
Exemple #15
0
     'desc_const': [0.0],
     'desc_inputs': [],
     'desc_bprop': [1],
     'skip': ['backward']}),
 ('BoundingBoxEncode', {
     'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
     'desc_inputs': [[256, 4], [256, 4]],
     'desc_bprop': [[256, 4]],
     'skip': ['backward']}),
 ('BoundingBoxDecode', {
     'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
     'desc_inputs': [[256, 4], [256, 4]],
     'desc_bprop': [[256, 4]],
     'skip': ['backward']}),
 ('GatherNd', {
     'block': P.GatherNd(),
     'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
                     Tensor(np.ones((2, 4), np.int32))),
     'desc_bprop': [[2]]}),
 ('ScatterNdUpdate', {
     'block': P.ScatterNdUpdate(),
     'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
                     Tensor(np.ones((2, 2), np.int32)),
                     Tensor(np.ones((2,), np.float32))),
     'desc_bprop': [[2, 3]]}),
 ('ScatterNd', {
     'block': P.ScatterNd(),
     'desc_const': [(3, 3)],
     'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
                     Tensor(np.ones((2,), np.int32))),
     'desc_bprop': [[3, 3]]}),
Exemple #16
0
    def __init__(self,
                 batch_size,
                 seq_length,
                 vocab_size,
                 decoder,
                 beam_width=4,
                 decoder_layers_nums=4,
                 length_penalty_weight=0.6,
                 cov_penalty_factor=0.1,
                 hidden_size=1024,
                 max_decode_length=64,
                 sos_id=2,
                 eos_id=3,
                 compute_type=mstype.float32):
        super(BeamSearchDecoder, self).__init__()

        self.encoder_length = seq_length
        self.hidden_size = hidden_size
        self.batch_size = batch_size
        self.vocab_size = vocab_size
        self.beam_width = beam_width
        self.decoder_layers_nums = decoder_layers_nums
        self.length_penalty_weight = length_penalty_weight
        self.cov_penalty_factor = cov_penalty_factor
        self.max_decode_length = max_decode_length
        self.decoder = decoder

        self.add = P.TensorAdd()
        self.expand = P.ExpandDims()
        self.reshape = P.Reshape()
        self.shape_flat = (-1,)
        self.shape = P.Shape()

        self.zero_tensor = Tensor(np.zeros([batch_size, beam_width]), mstype.float32)
        self.ninf_tensor = Tensor(np.full([batch_size, beam_width], -INF), mstype.float32)

        self.select = P.Select()
        self.flat_shape = (batch_size, beam_width * vocab_size)
        self.topk = P.TopK(sorted=True)
        self.floor_div = P.FloorDiv()
        self.vocab_size_tensor = Tensor(self.vocab_size, mstype.int32)
        self.real_div = P.RealDiv()
        self.mod = Mod()
        self.equal = P.Equal()
        self.eos_ids = Tensor(np.full([batch_size, beam_width], eos_id), mstype.int32)

        beam_ids = np.tile(np.arange(beam_width).reshape((1, beam_width)), [batch_size, 1])
        self.beam_ids = Tensor(beam_ids, mstype.int32)

        batch_ids = np.arange(batch_size * beam_width).reshape((batch_size, beam_width)) // beam_width
        self.batch_ids = Tensor(batch_ids, mstype.int32)

        self.concat = P.Concat(axis=-1)
        self.gather_nd = P.GatherNd()

        self.start = Tensor(0, dtype=mstype.int32)
        self.start_ids = Tensor(np.full([batch_size * beam_width, 1], sos_id), mstype.int32)
        self.init_seq = Tensor(np.full([batch_size, beam_width, self.max_decode_length], sos_id), mstype.int32)

        init_scores = np.tile(np.array([[0.] + [-INF] * (beam_width - 1)]), [batch_size, 1])
        self.init_scores = Tensor(init_scores, mstype.float32)
        self.init_finished = Tensor(np.zeros([batch_size, beam_width], dtype=np.bool))
        self.init_length = Tensor(np.zeros([batch_size, beam_width], dtype=np.int32))

        self.length_penalty = LengthPenalty(weight=length_penalty_weight)

        self.one = Tensor(1, mstype.int32)
        self.prob_concat = P.Concat(axis=1)
        self.cast = P.Cast()
        self.decoder_hidden_state = Tensor(np.zeros([self.decoder_layers_nums, 2,
                                                     self.batch_size * self.beam_width,
                                                     hidden_size]), mstype.float32)

        self.zeros_scores = Tensor(np.zeros([batch_size, beam_width], dtype=np.float))
        self.active_index = Tensor(np.ones([batch_size, beam_width], dtype=np.int32))
        self.init_zeros = Tensor(np.zeros([batch_size, beam_width], dtype=np.int32))
        self.init_ones = Tensor(np.ones([batch_size, beam_width], dtype=np.float32))

        self.accu_attn_scores = Tensor(np.zeros([batch_size, beam_width, self.encoder_length], dtype=np.float32))

        self.zeros = Tensor([0], mstype.int32)
        self.eos_tensor = Tensor(np.full([batch_size, beam_width, beam_width], eos_id), mstype.int32)

        self.ones_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], 1), mstype.float32)
        self.neg_inf_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], -INF), mstype.float32)
        self.zeros_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], 0), mstype.float32)
        self.zeros_2d = Tensor(np.full([batch_size * beam_width, self.encoder_length], 0), mstype.int32)
        self.argmin = P.ArgMinWithValue(axis=1)
        self.reducesum = P.ReduceSum()
        self.div = P.Div()
        self.shape_op = P.Shape()
        self.mul = P.Mul()
        self.log = P.Log()
        self.less = P.Less()
        self.tile = P.Tile()
        self.noteq = P.Neg()
        self.zeroslike = P.ZerosLike()
        self.greater_equal = P.GreaterEqual()
        self.sub = P.Sub()
Exemple #17
0
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSampleForRcnn, self).__init__()
        cfg = config
        self.dtype = np.float32
        self.ms_type = mstype.float32
        self.batch_size = batch_size
        self.neg_iou_thr = cfg.neg_iou_thr_stage2
        self.pos_iou_thr = cfg.pos_iou_thr_stage2
        self.min_pos_iou = cfg.min_pos_iou_stage2
        self.num_gts = cfg.num_gts
        self.num_bboxes = num_bboxes
        self.num_expected_pos = cfg.num_expected_pos_stage2
        self.num_expected_neg = cfg.num_expected_neg_stage2
        self.num_expected_total = cfg.num_expected_total_stage2

        self.add_gt_as_proposals = add_gt_as_proposals
        self.label_inds = Tensor(
            np.arange(1, self.num_gts + 1).astype(np.int32))
        self.add_gt_as_proposals_valid = Tensor(
            np.full(self.num_gts, self.add_gt_as_proposals, dtype=np.int32))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(
            self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(
            self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0,
                                                              0.0),
                                                       stds=(0.1, 0.1, 0.2,
                                                             0.2))
        self.concat_axis1 = P.Concat(axis=1)
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()

        # Check
        self.check_gt_one = Tensor(
            np.full((self.num_gts, 4), -1, dtype=self.dtype))
        self.check_anchor_two = Tensor(
            np.full((self.num_bboxes, 4), -2, dtype=self.dtype))

        # Init tensor
        self.assigned_gt_inds = Tensor(np.full(num_bboxes, -1, dtype=np.int32))
        self.assigned_gt_zeros = Tensor(
            np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(
            np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(
            np.full(num_bboxes, -1, dtype=np.int32))
        self.assigned_pos_ones = Tensor(
            np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.gt_ignores = Tensor(np.full(self.num_gts, -1, dtype=np.int32))
        self.range_pos_size = Tensor(
            np.arange(self.num_expected_pos).astype(self.dtype))
        self.check_neg_mask = Tensor(
            np.array(np.ones(self.num_expected_neg - self.num_expected_pos),
                     dtype=np.bool))
        self.bboxs_neg_mask = Tensor(
            np.zeros((self.num_expected_neg, 4), dtype=self.dtype))
        self.labels_neg_mask = Tensor(
            np.array(np.zeros(self.num_expected_neg), dtype=np.uint8))

        self.reshape_shape_pos = (self.num_expected_pos, 1)
        self.reshape_shape_neg = (self.num_expected_neg, 1)

        self.scalar_zero = Tensor(0.0, dtype=self.ms_type)
        self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=self.ms_type)
        self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=self.ms_type)
        self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=self.ms_type)
Exemple #18
0
 def __init__(self):
     super(GatherNdNet, self).__init__()
     self.gathernd = P.GatherNd()
Exemple #19
0
    def __init__(self, config):
        super(Deeptext_VGG16, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides
        ) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales,
                                self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(
            np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config, self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels, config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config, self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config, config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(
            config, self.train_batch_size, config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(576, 960), means=self.target_means, \
                                          stds=self.target_stds)

        # Rcnn
        self.rcnn = Rcnn(
            config, config.rcnn_in_channels * config.roi_layer['out_size'] *
            config.roi_layer['out_size'], self.train_batch_size,
            self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(np.float32))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(np.float32) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = (self.num_classes - 2)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        self.use_ambigous_sample = config.use_ambigous_sample
        roi_align_index = [
            np.array(np.ones((config.num_expected_pos_stage2 +
                              config.num_expected_neg_stage2, 1)) * i,
                     dtype=np.float32) for i in range(self.train_batch_size)
        ]
        if self.use_ambigous_sample:
            roi_align_index = [
                np.array(np.ones((config.num_expected_pos_stage2 +
                                  config.num_expected_amb_stage2 +
                                  config.num_expected_neg_stage2, 1)) * i,
                         dtype=np.float32)
                for i in range(self.train_batch_size)
            ]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float32) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(
            np.concatenate(roi_align_index_test))

        self.roi_align4 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.125)
        self.roi_align5 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.0625)

        self.concat1 = P.Concat(axis=1)
        self.roi_align_fuse = _conv(in_channels=1024,
                                    out_channels=512,
                                    kernel_size=1,
                                    padding=0,
                                    stride=1)
        self.vgg16_feature_extractor = VGG16FeatureExtraction()
Exemple #20
0
    def __init__(self, config):
        super(Mask_Rcnn_Resnet50, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Backbone resnet50
        self.backbone = ResNetFea(ResidualBlockUsing,
                                  config.resnet_block,
                                  config.resnet_in_channels,
                                  config.resnet_out_channels,
                                  False)

        # Fpn
        self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels,
                                        config.fpn_out_channels,
                                        config.fpn_num_outs)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config,
                                 self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels,
                                 config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config,
                                           self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config,
                                                config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size,
                                                                      config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \
                                          stds=self.target_stds)

        # Roi
        self.roi_align = SingleRoIExtractor(config,
                                            config.roi_layer,
                                            config.roi_align_out_channels,
                                            config.roi_align_featmap_strides,
                                            self.train_batch_size,
                                            config.roi_align_finest_scale,
                                            mask=False)
        self.roi_align.set_train_local(config, True)

        self.roi_align_mask = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 self.train_batch_size,
                                                 config.roi_align_finest_scale,
                                                 mask=True)
        self.roi_align_mask.set_train_local(config, True)

        self.roi_align_test = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 1,
                                                 config.roi_align_finest_scale,
                                                 mask=False)
        self.roi_align_test.set_train_local(config, False)

        self.roi_align_mask_test = SingleRoIExtractor(config,
                                                      config.roi_layer,
                                                      config.roi_align_out_channels,
                                                      config.roi_align_featmap_strides,
                                                      1,
                                                      config.roi_align_finest_scale,
                                                      mask=True)
        self.roi_align_mask_test.set_train_local(config, False)

        # Rcnn
        self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes)
        self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes-1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask,
                                                self.ones_mask, self.zeros_mask), axis=1))
        self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask,
                                                   self.ones_mask, self.ones_mask, self.zeros_mask), axis=1))

        self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr)
        self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0)
        self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1)
        self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = min(self.num_classes - 2, 55)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i,
                                    dtype=np.float16) for i in range(self.train_batch_size)]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test))

        roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i,
                                        dtype=np.float16) for i in range(self.train_batch_size)]
        self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos))

        self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(np.float16))

        self.argmax_with_value = P.ArgMaxWithValue(axis=1)
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.onehot = P.OneHot()
        self.reducesum = P.ReduceSum()
        self.sigmoid = P.Sigmoid()
        self.expand_dims = P.ExpandDims()
        self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(np.float16))
        self.value = Tensor(1.0, mstype.float16)
Exemple #21
0
 def __init__(self, w1, strategy1=None, strategy2=None):
     super().__init__()
     self.mul = P.Mul().shard(strategy1)
     self.w1 = Parameter(w1, "w1")
     self.indices = Tensor(np.ones([16, 2]), dtype=ms.int32)
     self.gathernd = P.GatherNd().shard(strategy2)
Exemple #22
0
    def __init__(self,
                 config,
                 representation_size,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)):
        super(Rcnn, self).__init__()
        cfg = config
        self.rcnn_loss_cls_weight = Tensor(
            np.array(cfg.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(
            np.array(cfg.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels
        self.train_batch_size = batch_size
        self.test_batch_size = cfg.test_batch_size
        self.use_ambigous_sample = cfg.use_ambigous_sample

        shape_0 = (self.rcnn_fc_out_channels, representation_size)
        weights_0 = initializer("XavierUniform",
                                shape=shape_0[::-1],
                                dtype=mstype.float16).to_tensor()
        shape_1 = (self.rcnn_fc_out_channels, self.rcnn_fc_out_channels)
        weights_1 = initializer("XavierUniform",
                                shape=shape_1[::-1],
                                dtype=mstype.float16).to_tensor()
        self.shared_fc_0 = DenseNoTranpose(representation_size,
                                           self.rcnn_fc_out_channels,
                                           weights_0)
        self.shared_fc_1 = DenseNoTranpose(self.rcnn_fc_out_channels,
                                           self.rcnn_fc_out_channels,
                                           weights_1)

        cls_weight = initializer(
            'Normal',
            shape=[num_classes, self.rcnn_fc_out_channels][::-1],
            dtype=mstype.float16).to_tensor()
        reg_weight = initializer(
            'Normal',
            shape=[num_classes * 4, self.rcnn_fc_out_channels][::-1],
            dtype=mstype.float16).to_tensor()
        self.cls_scores = DenseNoTranpose(self.rcnn_fc_out_channels,
                                          num_classes, cls_weight)
        self.reg_scores = DenseNoTranpose(self.rcnn_fc_out_channels,
                                          num_classes * 4, reg_weight)

        self.flatten = P.Flatten()
        self.relu = P.ReLU()
        self.logicaland = P.LogicalAnd()
        self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0)
        self.reshape = P.Reshape()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.equal = P.Equal()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.gather = P.GatherNd()
        self.argmax = P.ArgMaxWithValue(axis=1)

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.value = Tensor(1.0, mstype.float16)

        self.num_bboxes = (cfg.num_expected_pos_stage2 +
                           cfg.num_expected_neg_stage2) * batch_size
        if self.use_ambigous_sample:
            self.num_bboxes = (cfg.num_expected_pos_stage2 +
                               cfg.num_expected_amb_stage2 +
                               cfg.num_expected_neg_stage2) * batch_size

        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes, ))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))

        self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size

        range_max = np.arange(self.num_bboxes_test).astype(np.int32)
        self.range_max = Tensor(range_max)
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSampleForRcnn, self).__init__()
        cfg = config
        self.batch_size = batch_size
        self.neg_iou_thr = cfg.neg_iou_thr_stage2
        self.pos_iou_thr = cfg.pos_iou_thr_stage2
        self.min_pos_iou = cfg.min_pos_iou_stage2
        self.num_gts = cfg.num_gts
        self.num_bboxes = num_bboxes
        self.num_expected_pos = cfg.num_expected_pos_stage2
        self.num_expected_neg = cfg.num_expected_neg_stage2
        self.num_expected_total = cfg.num_expected_total_stage2

        self.add_gt_as_proposals = add_gt_as_proposals
        self.label_inds = Tensor(
            np.arange(1, self.num_gts + 1).astype(np.int32))
        self.add_gt_as_proposals_valid = Tensor(
            np.array(self.add_gt_as_proposals * np.ones(self.num_gts),
                     dtype=np.int32))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(
            self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(
            self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0,
                                                              0.0),
                                                       stds=(0.1, 0.1, 0.2,
                                                             0.2))
        self.concat_axis1 = P.Concat(axis=1)
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()

        # Check
        self.check_gt_one = Tensor(
            np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16))
        self.check_anchor_two = Tensor(
            np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16))

        # Init tensor
        self.assigned_gt_inds = Tensor(
            np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_zeros = Tensor(
            np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(
            np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(
            np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_pos_ones = Tensor(
            np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.gt_ignores = Tensor(
            np.array(-1 * np.ones(self.num_gts), dtype=np.int32))
        self.range_pos_size = Tensor(
            np.arange(self.num_expected_pos).astype(np.float16))
        self.check_neg_mask = Tensor(
            np.array(np.ones(self.num_expected_neg - self.num_expected_pos),
                     dtype=np.bool))
        self.bboxs_neg_mask = Tensor(
            np.zeros((self.num_expected_neg, 4), dtype=np.float16))
        self.labels_neg_mask = Tensor(
            np.array(np.zeros(self.num_expected_neg), dtype=np.uint8))

        self.reshape_shape_pos = (self.num_expected_pos, 1)
        self.reshape_shape_neg = (self.num_expected_neg, 1)

        self.scalar_zero = Tensor(0.0, dtype=mstype.float16)
        self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr,
                                         dtype=mstype.float16)
        self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr,
                                         dtype=mstype.float16)
        self.scalar_min_pos_iou = Tensor(self.min_pos_iou,
                                         dtype=mstype.float16)

        self.expand_dims = P.ExpandDims()
        self.split = P.Split(axis=1, output_num=4)
        self.concat_last_axis = P.Concat(axis=-1)
        self.round = P.Round()
        self.image_h_w = Tensor(
            [cfg.img_height, cfg.img_width, cfg.img_height, cfg.img_width],
            dtype=mstype.float16)
        self.range = nn.Range(start=0, limit=cfg.num_expected_pos_stage2)
        self.crop_and_resize = P.CropAndResize(method="bilinear_v2")
        self.mask_shape = (cfg.mask_shape[0], cfg.mask_shape[1])
        self.squeeze_mask_last = P.Squeeze(axis=-1)
Exemple #24
0
    def __init__(self,
                 batch_size,
                 seq_length,
                 vocab_size,
                 decoder,
                 beam_width=4,
                 length_penalty_weight=1.0,
                 max_decode_length=128,
                 sos_id=1,
                 eos_id=2,
                 compute_type=mstype.float32):
        super(BeamSearchDecoder, self).__init__(auto_prefix=False)
        self.seq_length = seq_length
        self.batch_size = batch_size
        self.vocab_size = vocab_size
        self.beam_width = beam_width
        self.length_penalty_weight = length_penalty_weight
        self.max_decode_length = max_decode_length
        self.decoder = decoder

        self.add = P.TensorAdd()
        self.expand = P.ExpandDims()
        self.reshape = P.Reshape()
        self.shape_flat = (-1, )
        self.shape = P.Shape()

        self.zero_tensor = Tensor(np.zeros([batch_size, beam_width]),
                                  mstype.float32)
        self.ninf_tensor = Tensor(np.full([batch_size, beam_width], -INF),
                                  mstype.float32)

        self.select = P.Select()
        self.flat_shape = (batch_size, beam_width * vocab_size)
        self.topk = P.TopK(sorted=True)
        self.floor_div = P.FloorDiv()
        self.vocab_size_tensor = Tensor(self.vocab_size, mstype.int32)
        self.real_div = P.RealDiv()
        self.mod = Mod()
        self.equal = P.Equal()
        self.eos_ids = Tensor(np.full([batch_size, beam_width], eos_id),
                              mstype.int32)

        beam_ids = np.tile(
            np.arange(beam_width).reshape((1, beam_width)), [batch_size, 1])
        self.beam_ids = Tensor(beam_ids, mstype.int32)
        batch_ids = np.arange(batch_size * beam_width).reshape(
            (batch_size, beam_width)) // beam_width
        self.batch_ids = Tensor(batch_ids, mstype.int32)
        self.concat = P.Concat(axis=-1)
        self.gather_nd = P.GatherNd()

        self.greater_equal = P.GreaterEqual()
        self.sub = P.Sub()
        self.cast = P.Cast()
        self.zeroslike = P.ZerosLike()

        # init inputs and states
        self.start_ids = Tensor(np.full([batch_size * beam_width, 1], sos_id),
                                mstype.int32)
        self.init_seq = Tensor(np.full([batch_size, beam_width, 1], sos_id),
                               mstype.int32)
        init_scores = np.tile(np.array([[0.] + [-INF] * (beam_width - 1)]),
                              [batch_size, 1])
        self.init_scores = Tensor(init_scores, mstype.float32)
        self.init_finished = Tensor(
            np.zeros([batch_size, beam_width], dtype=np.bool))
        self.init_length = Tensor(
            np.zeros([batch_size, beam_width], dtype=np.int32))
        self.length_penalty = LengthPenalty(weight=length_penalty_weight)
        self.one = Tensor(1, mstype.int32)
Exemple #25
0
     'desc_inputs': [[256, 4], [256, 4]],
     'desc_bprop': [[256, 4]],
     'skip': ['backward']
 }),
 ('BoundingBoxDecode', {
     'block':
     P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0),
                         stds=(1.0, 1.0, 1.0, 1.0),
                         max_shape=(768, 1280)),
     'desc_inputs': [[256, 4], [256, 4]],
     'desc_bprop': [[256, 4]],
     'skip': ['backward']
 }),
 ('GatherNd', {
     'block':
     P.GatherNd(),
     'desc_inputs': (Tensor(np.ones(
         (1, 3, 6, 6), np.float32)), Tensor(np.ones((2, 4), np.int32))),
     'desc_bprop': [[2]]
 }),
 ('ScatterNdUpdate', {
     'block':
     P.ScatterNdUpdate(),
     'desc_inputs': (Tensor(np.ones(
         (2, 3), np.float32)), Tensor(np.ones(
             (2, 2), np.int32)), Tensor(np.ones((2, ), np.float32))),
     'desc_bprop': [[2, 3]]
 }),
 ('ScatterNd', {
     'block':
     P.ScatterNd(),