def __init__(self, num_classes, num_boxes, neg_pre_positive, batch_size): super(MultiBoxLoss, self).__init__() self.num_classes = num_classes self.num_boxes = num_boxes self.neg_pre_positive = neg_pre_positive self.notequal = P.NotEqual() self.less = P.Less() self.tile = P.Tile() self.reduce_sum = P.ReduceSum() self.reduce_mean = P.ReduceMean() self.expand_dims = P.ExpandDims() self.smooth_l1_loss = P.SmoothL1Loss() self.cross_entropy = SoftmaxCrossEntropyWithLogits() self.maximum = P.Maximum() self.minimum = P.Minimum() self.sort_descend = P.TopK(True) self.sort = P.TopK(True) self.gather = P.GatherNd() self.max = P.ReduceMax() self.log = P.Log() self.exp = P.Exp() self.concat = P.Concat(axis=1) self.reduce_sum2 = P.ReduceSum(keep_dims=True) self.idx = Tensor( np.reshape(np.arange(batch_size * num_boxes), (-1, 1)), ms.int32)
def __init__(self, config, batch_size, num_classes, use_sigmoid_cls, target_means=(.0, .0, .0, .0), target_stds=(1.0, 1.0, 1.0, 1.0) ): super(Proposal, self).__init__() cfg = config self.batch_size = batch_size self.num_classes = num_classes self.target_means = target_means self.target_stds = target_stds self.use_sigmoid_cls = config.use_sigmoid_cls if self.use_sigmoid_cls: self.cls_out_channels = 1 self.activation = P.Sigmoid() self.reshape_shape = (-1, 1) else: self.cls_out_channels = num_classes self.activation = P.Softmax(axis=1) self.reshape_shape = (-1, 2) if self.cls_out_channels <= 0: raise ValueError('num_classes={} is too small'.format(num_classes)) self.num_pre = cfg.rpn_proposal_nms_pre self.min_box_size = cfg.rpn_proposal_min_bbox_size self.nms_thr = cfg.rpn_proposal_nms_thr self.nms_post = cfg.rpn_proposal_nms_post self.nms_across_levels = cfg.rpn_proposal_nms_across_levels self.max_num = cfg.rpn_proposal_max_num # Op Define self.squeeze = P.Squeeze() self.reshape = P.Reshape() self.cast = P.Cast() self.feature_shapes = cfg.feature_shapes self.transpose_shape = (1, 2, 0) self.decode = BoundingBoxDecode() self.nms = P.NMSWithMask(self.nms_thr) self.concat_axis0 = P.Concat(axis=0) self.concat_axis1 = P.Concat(axis=1) self.split = P.Split(axis=1, output_num=5) self.min = P.Minimum() self.gatherND = P.GatherNd() self.slice = P.Slice() self.select = P.Select() self.greater = P.Greater() self.transpose = P.Transpose() self.tile = P.Tile() self.set_train_local(config, training=True) self.multi_10 = Tensor(10.0, mstype.float16)
def __init__(self, probs=None, seed=None, dtype=mstype.int32, name="Categorical"): param = dict(locals()) param['param_dict'] = {'probs': probs} valid_dtype = mstype.uint_type + mstype.int_type + mstype.float_type Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) super(Categorical, self).__init__(seed, dtype, name, param) self._probs = self._add_parameter(probs, 'probs') if self.probs is not None: check_rank(self.probs) check_prob(self.probs) check_sum_equal_one(probs) # update is_scalar_batch and broadcast_shape # drop one dimension if self.probs.shape[:-1] == (): self._is_scalar_batch = True self._broadcast_shape = self._broadcast_shape[:-1] self.argmax = P.ArgMaxWithValue(axis=-1) self.broadcast = broadcast_to self.cast = P.Cast() self.clip_by_value = C.clip_by_value self.concat = P.Concat(-1) self.cumsum = P.CumSum() self.dtypeop = P.DType() self.exp = exp_generic self.expand_dim = P.ExpandDims() self.fill = P.Fill() self.gather = P.GatherNd() self.greater = P.Greater() self.issubclass = P.IsSubClass() self.less = P.Less() self.log = log_generic self.log_softmax = P.LogSoftmax() self.logicor = P.LogicalOr() self.logicand = P.LogicalAnd() self.multinomial = P.Multinomial(seed=self.seed) self.reshape = P.Reshape() self.reduce_sum = P.ReduceSum(keep_dims=True) self.select = P.Select() self.shape = P.Shape() self.softmax = P.Softmax() self.squeeze = P.Squeeze() self.squeeze_first_axis = P.Squeeze(0) self.squeeze_last_axis = P.Squeeze(-1) self.square = P.Square() self.transpose = P.Transpose() self.is_nan = P.IsNan() self.index_type = mstype.int32 self.nan = np.nan
def test_case2_indices_to_matrix(): op = P.GatherNd() op_wrapper = OpNetWrapper(op) indices = Tensor(np.array([[1], [0]]), mindspore.int32) params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32) outputs = op_wrapper(params, indices) print(outputs) expected = [[2, 3], [0, 1]] assert np.allclose(outputs.asnumpy(), np.array(expected))
def test_case1_basic_func(): op = P.GatherNd() op_wrapper = OpNetWrapper(op) indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32) outputs = op_wrapper(params, indices) print(outputs) expected = [0, 3] assert np.allclose(outputs.asnumpy(), np.array(expected))
def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): super(BboxAssignSample, self).__init__() cfg = config self.batch_size = batch_size self.neg_iou_thr = Tensor(cfg.neg_iou_thr, mstype.float16) self.pos_iou_thr = Tensor(cfg.pos_iou_thr, mstype.float16) self.min_pos_iou = Tensor(cfg.min_pos_iou, mstype.float16) self.zero_thr = Tensor(0.0, mstype.float16) self.num_bboxes = num_bboxes self.num_gts = cfg.num_gts self.num_expected_pos = cfg.num_expected_pos self.num_expected_neg = cfg.num_expected_neg self.add_gt_as_proposals = add_gt_as_proposals if self.add_gt_as_proposals: self.label_inds = Tensor(np.arange(1, self.num_gts + 1)) self.concat = P.Concat(axis=0) self.max_gt = P.ArgMaxWithValue(axis=0) self.max_anchor = P.ArgMaxWithValue(axis=1) self.sum_inds = P.ReduceSum() self.iou = P.IOU() self.greaterequal = P.GreaterEqual() self.greater = P.Greater() self.select = P.Select() self.gatherND = P.GatherNd() self.squeeze = P.Squeeze() self.cast = P.Cast() self.logicaland = P.LogicalAnd() self.less = P.Less() self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos) self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg) self.reshape = P.Reshape() self.equal = P.Equal() self.bounding_box_encode = BoundingBoxEncode() self.scatterNdUpdate = P.ScatterNdUpdate() self.scatterNd = P.ScatterNd() self.logicalnot = P.LogicalNot() self.tile = P.Tile() self.zeros_like = P.ZerosLike() self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) self.assigned_gt_zeros = Tensor(np.array(np.zeros(num_bboxes), dtype=np.int32)) self.assigned_gt_ones = Tensor(np.array(np.ones(num_bboxes), dtype=np.int32)) self.assigned_gt_ignores = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32)) self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16)) self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) self.print = P.Print()
def test_case4(): op = P.GatherNd() op_wrapper = OpNetWrapper(op) indices = Tensor(np.array([[0, 1], [1, 0]]), mindspore.int32) # (2, 2) params = Tensor(np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2) outputs = op_wrapper(params, indices) print(outputs) expected = [[2, 3], [4, 5]] # (2, 2) assert np.allclose(outputs.asnumpy(), np.array(expected))
def __init__(self, config, batch_size, num_classes, target_means=(0., 0., 0., 0.), target_stds=(0.1, 0.1, 0.2, 0.2)): super(RcnnCls, self).__init__() cfg = config self.rcnn_loss_cls_weight = Tensor( np.array(cfg.rcnn_loss_cls_weight).astype(np.float16)) self.rcnn_loss_reg_weight = Tensor( np.array(cfg.rcnn_loss_reg_weight).astype(np.float16)) self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels self.target_means = target_means self.target_stds = target_stds self.num_classes = num_classes self.in_channels = cfg.rcnn_in_channels self.train_batch_size = batch_size self.test_batch_size = cfg.test_batch_size self.fpn_cls = FpnCls(self.in_channels, self.rcnn_fc_out_channels, self.num_classes, cfg.roi_layer["out_size"]) self.relu = P.ReLU() self.logicaland = P.LogicalAnd() self.loss_cls = P.SoftmaxCrossEntropyWithLogits() self.loss_bbox = P.SmoothL1Loss(beta=1.0) self.loss_mask = P.SigmoidCrossEntropyWithLogits() self.reshape = P.Reshape() self.onehot = P.OneHot() self.greater = P.Greater() self.cast = P.Cast() self.sum_loss = P.ReduceSum() self.tile = P.Tile() self.expandims = P.ExpandDims() self.gather = P.GatherNd() self.argmax = P.ArgMaxWithValue(axis=1) self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.value = Tensor(1.0, mstype.float16) self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_neg_stage2) * batch_size rmv_first = np.ones((self.num_bboxes, self.num_classes)) rmv_first[:, 0] = np.zeros((self.num_bboxes, )) self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16)) self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size
def __init__(self, config): super(LabelSmoothedCrossEntropyCriterion, self).__init__() self.vocab_size = config.vocab_size self.batch_size = config.batch_size self.smoothing = 0.1 self.confidence = 0.9 self.last_idx = (-1,) self.reduce_sum = P.ReduceSum() self.reduce_mean = P.ReduceMean() self.reshape = P.Reshape() self.neg = P.Neg() self.cast = P.Cast() self.index_ids = Tensor(np.arange(config.batch_size * config.max_decode_length).reshape((-1, 1)), mstype.int32) self.gather_nd = P.GatherNd() self.expand = P.ExpandDims() self.concat = P.Concat(axis=-1)
def _get_real_word(self, select_word, real_word_index): """ Get word index in UNSORTED(logits generated from GPT2Model without passing through a TopKTopPFilter) ids and logits. """ # mindspore.ops.Gather is supported in MindSpore v.1.0 on Ascend if self.device_target == "Ascend" or self.device_target == "GPU": select_word_np = select_word.asnumpy() range_index = np.arange(0, self.batch_size) select_word_merge = np.array([[index, word] for index, word in zip(range_index, select_word_np)], dtype=int) word_index_2D = Tensor(select_word_merge, dtype=mstype.int32) real_selected_word_ids = P.GatherNd()( real_word_index,word_index_2D) #Tensor shape: (batch_size,) else: raise NotImplementedError('CPU and other backend types have not been supported yet') return real_selected_word_ids
def __init__(self, probs=None, logits=None, seed=None, dtype=mstype.int32, name="Categorical"): param = dict(locals()) valid_dtype = mstype.int_type check_type(dtype, valid_dtype, "Categorical") super(Categorical, self).__init__(seed, dtype, name, param) if (probs is None) == (logits is None): raise_probs_logits_error() self.reduce_sum = P.ReduceSum(keep_dims=True) self.reduce_sum1 = P.ReduceSum(keep_dims=False) self.log = P.Log() self.exp = P.Exp() self.shape = P.Shape() self.reshape = P.Reshape() self.div = P.RealDiv() self.size = P.Size() self.mutinomial = P.Multinomial(seed=self.seed) self.cast = P.Cast() self.expandim = P.ExpandDims() self.gather = P.GatherNd() self.concat = P.Concat(-1) self.transpose = P.Transpose() if probs is not None: self._probs = cast_to_tensor(probs, mstype.float32) input_sum = self.reduce_sum(self._probs, -1) self._probs = self.div(self._probs, input_sum) self._logits = probs_to_logits(self._probs) self._param = self._probs else: self._logits = cast_to_tensor(logits, mstype.float32) input_sum = self.reduce_sum(self.exp(self._logits), -1) self._logits = self._logits - self.log(input_sum) self._probs = logits_to_probs(self._logits) self._param = self._logits self._num_events = self.shape(self._param)[-1] self._param2d = self.reshape(self._param, (-1, self._num_events)) self._batch_shape = self.shape(self._param)[:-1] self._batch_shape_n = (1, ) * len(self._batch_shape)
def test_mode_init(self, config): self.test_batch_size = config.test_batch_size self.split = P.Split(axis=0, output_num=self.test_batch_size) self.split_shape = P.Split(axis=0, output_num=4) self.split_scores = P.Split(axis=1, output_num=self.num_classes) self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1) self.tile = P.Tile() self.gather = P.GatherNd() self.rpn_max_num = config.rpn_max_num self.zeros_for_nms = Tensor( np.zeros((self.rpn_max_num, 3)).astype(self.dtype)) self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool) self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool) self.bbox_mask = Tensor( np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask, self.zeros_mask), axis=1)) self.nms_pad_mask = Tensor( np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask, self.ones_mask, self.zeros_mask), axis=1)) self.test_score_thresh = Tensor( np.ones((self.rpn_max_num, 1)).astype(self.dtype) * config.test_score_thr) self.test_score_zeros = Tensor( np.ones((self.rpn_max_num, 1)).astype(self.dtype) * 0) self.test_box_zeros = Tensor( np.ones((self.rpn_max_num, 4)).astype(self.dtype) * -1) self.test_iou_thr = Tensor( np.ones((self.rpn_max_num, 1)).astype(self.dtype) * config.test_iou_thr) self.test_max_per_img = config.test_max_per_img self.nms_test = P.NMSWithMask(config.test_iou_thr) self.softmax = P.Softmax(axis=1) self.logicand = P.LogicalAnd() self.oneslike = P.OnesLike() self.test_topk = P.TopK(sorted=True) self.test_num_proposal = self.test_batch_size * self.rpn_max_num
def get_pixel_value(self, img, x, y): """ Utility function to get pixel value for coordinate vectors x and y from a 4D tensor image. Input ----- - img: tensor of shape (B, H, W, C) - x: flattened tensor of shape (B*H*W,) - y: flattened tensor of shape (B*H*W,) Returns ------- - output: tensor of shape (B, H, W, C) """ shape = P.Shape() img_shape = shape(x) batch_size = img_shape[0] height = img_shape[1] width = img_shape[2] img[:, 0, :, :] = self.zero img[:, height - 1, :, :] = self.zero img[:, :, 0, :] = self.zero img[:, :, width - 1, :] = self.zero tile = P.Tile() batch_idx = P.Slice()(self.batch_idx, (0, 0, 0), (batch_size, 1, 1)) b = tile(batch_idx, (1, height, width)) expand_dims = P.ExpandDims() b = expand_dims(b, 3) x = expand_dims(x, 3) y = expand_dims(y, 3) concat = P.Concat(3) indices = concat((b, y, x)) cast = P.Cast() indices = cast(indices, mindspore.int32) gather_nd = P.GatherNd() return cast(gather_nd(img, indices), mindspore.float32)
def __init__(self, probs=None, logits=None, seed=0, dtype=mstype.int32, name="Categorical"): param = dict(locals()) super(Categorical, self).__init__(seed, dtype, name, param) if (probs is None) == (logits is None): raise ValueError( "Either 'prob' or 'logits' must be specified, but not both.") self.reduce_sum = P.ReduceSum(keep_dims=True) self.log = P.Log() self.exp = P.Exp() self.shape = P.Shape() self.reshape = P.Reshape() self.div = P.RealDiv() self.size = P.Size() self.mutinomial = P.Multinomial(seed=seed) self.cast = P.Cast() self.expandim = P.ExpandDims() self.gather = P.GatherNd() self.concat = P.Concat(-1) if probs is not None: self._probs = cast_to_tensor(probs, mstype.float32) input_sum = self.reduce_sum(self._probs, -1) self._probs = self.div(self._probs, input_sum) self._logits = probs_to_logits(self._probs) self._param = self._probs else: self._logits = cast_to_tensor(logits, mstype.float32) input_sum = self.reduce_sum(self.exp(self._logits), -1) self._logits = self._logits - self.log(input_sum) self._probs = logits_to_probs(self._logits) self._param = self._logits self._num_events = self.shape(self._param)[-1] self._param2d = self.reshape(self._param, (-1, self._num_events)) self._batch_shape = self.shape(self._param2d)[0]
'desc_const': [0.0], 'desc_inputs': [], 'desc_bprop': [1], 'skip': ['backward']}), ('BoundingBoxEncode', { 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward']}), ('BoundingBoxDecode', { 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward']}), ('GatherNd', { 'block': P.GatherNd(), 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)), Tensor(np.ones((2, 4), np.int32))), 'desc_bprop': [[2]]}), ('ScatterNdUpdate', { 'block': P.ScatterNdUpdate(), 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)), Tensor(np.ones((2, 2), np.int32)), Tensor(np.ones((2,), np.float32))), 'desc_bprop': [[2, 3]]}), ('ScatterNd', { 'block': P.ScatterNd(), 'desc_const': [(3, 3)], 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)), Tensor(np.ones((2,), np.int32))), 'desc_bprop': [[3, 3]]}),
def __init__(self, batch_size, seq_length, vocab_size, decoder, beam_width=4, decoder_layers_nums=4, length_penalty_weight=0.6, cov_penalty_factor=0.1, hidden_size=1024, max_decode_length=64, sos_id=2, eos_id=3, compute_type=mstype.float32): super(BeamSearchDecoder, self).__init__() self.encoder_length = seq_length self.hidden_size = hidden_size self.batch_size = batch_size self.vocab_size = vocab_size self.beam_width = beam_width self.decoder_layers_nums = decoder_layers_nums self.length_penalty_weight = length_penalty_weight self.cov_penalty_factor = cov_penalty_factor self.max_decode_length = max_decode_length self.decoder = decoder self.add = P.TensorAdd() self.expand = P.ExpandDims() self.reshape = P.Reshape() self.shape_flat = (-1,) self.shape = P.Shape() self.zero_tensor = Tensor(np.zeros([batch_size, beam_width]), mstype.float32) self.ninf_tensor = Tensor(np.full([batch_size, beam_width], -INF), mstype.float32) self.select = P.Select() self.flat_shape = (batch_size, beam_width * vocab_size) self.topk = P.TopK(sorted=True) self.floor_div = P.FloorDiv() self.vocab_size_tensor = Tensor(self.vocab_size, mstype.int32) self.real_div = P.RealDiv() self.mod = Mod() self.equal = P.Equal() self.eos_ids = Tensor(np.full([batch_size, beam_width], eos_id), mstype.int32) beam_ids = np.tile(np.arange(beam_width).reshape((1, beam_width)), [batch_size, 1]) self.beam_ids = Tensor(beam_ids, mstype.int32) batch_ids = np.arange(batch_size * beam_width).reshape((batch_size, beam_width)) // beam_width self.batch_ids = Tensor(batch_ids, mstype.int32) self.concat = P.Concat(axis=-1) self.gather_nd = P.GatherNd() self.start = Tensor(0, dtype=mstype.int32) self.start_ids = Tensor(np.full([batch_size * beam_width, 1], sos_id), mstype.int32) self.init_seq = Tensor(np.full([batch_size, beam_width, self.max_decode_length], sos_id), mstype.int32) init_scores = np.tile(np.array([[0.] + [-INF] * (beam_width - 1)]), [batch_size, 1]) self.init_scores = Tensor(init_scores, mstype.float32) self.init_finished = Tensor(np.zeros([batch_size, beam_width], dtype=np.bool)) self.init_length = Tensor(np.zeros([batch_size, beam_width], dtype=np.int32)) self.length_penalty = LengthPenalty(weight=length_penalty_weight) self.one = Tensor(1, mstype.int32) self.prob_concat = P.Concat(axis=1) self.cast = P.Cast() self.decoder_hidden_state = Tensor(np.zeros([self.decoder_layers_nums, 2, self.batch_size * self.beam_width, hidden_size]), mstype.float32) self.zeros_scores = Tensor(np.zeros([batch_size, beam_width], dtype=np.float)) self.active_index = Tensor(np.ones([batch_size, beam_width], dtype=np.int32)) self.init_zeros = Tensor(np.zeros([batch_size, beam_width], dtype=np.int32)) self.init_ones = Tensor(np.ones([batch_size, beam_width], dtype=np.float32)) self.accu_attn_scores = Tensor(np.zeros([batch_size, beam_width, self.encoder_length], dtype=np.float32)) self.zeros = Tensor([0], mstype.int32) self.eos_tensor = Tensor(np.full([batch_size, beam_width, beam_width], eos_id), mstype.int32) self.ones_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], 1), mstype.float32) self.neg_inf_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], -INF), mstype.float32) self.zeros_3d = Tensor(np.full([batch_size, beam_width, self.encoder_length], 0), mstype.float32) self.zeros_2d = Tensor(np.full([batch_size * beam_width, self.encoder_length], 0), mstype.int32) self.argmin = P.ArgMinWithValue(axis=1) self.reducesum = P.ReduceSum() self.div = P.Div() self.shape_op = P.Shape() self.mul = P.Mul() self.log = P.Log() self.less = P.Less() self.tile = P.Tile() self.noteq = P.Neg() self.zeroslike = P.ZerosLike() self.greater_equal = P.GreaterEqual() self.sub = P.Sub()
def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): super(BboxAssignSampleForRcnn, self).__init__() cfg = config self.dtype = np.float32 self.ms_type = mstype.float32 self.batch_size = batch_size self.neg_iou_thr = cfg.neg_iou_thr_stage2 self.pos_iou_thr = cfg.pos_iou_thr_stage2 self.min_pos_iou = cfg.min_pos_iou_stage2 self.num_gts = cfg.num_gts self.num_bboxes = num_bboxes self.num_expected_pos = cfg.num_expected_pos_stage2 self.num_expected_neg = cfg.num_expected_neg_stage2 self.num_expected_total = cfg.num_expected_total_stage2 self.add_gt_as_proposals = add_gt_as_proposals self.label_inds = Tensor( np.arange(1, self.num_gts + 1).astype(np.int32)) self.add_gt_as_proposals_valid = Tensor( np.full(self.num_gts, self.add_gt_as_proposals, dtype=np.int32)) self.concat = P.Concat(axis=0) self.max_gt = P.ArgMaxWithValue(axis=0) self.max_anchor = P.ArgMaxWithValue(axis=1) self.sum_inds = P.ReduceSum() self.iou = P.IOU() self.greaterequal = P.GreaterEqual() self.greater = P.Greater() self.select = P.Select() self.gatherND = P.GatherNd() self.squeeze = P.Squeeze() self.cast = P.Cast() self.logicaland = P.LogicalAnd() self.less = P.Less() self.random_choice_with_mask_pos = P.RandomChoiceWithMask( self.num_expected_pos) self.random_choice_with_mask_neg = P.RandomChoiceWithMask( self.num_expected_neg) self.reshape = P.Reshape() self.equal = P.Equal() self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(0.1, 0.1, 0.2, 0.2)) self.concat_axis1 = P.Concat(axis=1) self.logicalnot = P.LogicalNot() self.tile = P.Tile() # Check self.check_gt_one = Tensor( np.full((self.num_gts, 4), -1, dtype=self.dtype)) self.check_anchor_two = Tensor( np.full((self.num_bboxes, 4), -2, dtype=self.dtype)) # Init tensor self.assigned_gt_inds = Tensor(np.full(num_bboxes, -1, dtype=np.int32)) self.assigned_gt_zeros = Tensor( np.array(np.zeros(num_bboxes), dtype=np.int32)) self.assigned_gt_ones = Tensor( np.array(np.ones(num_bboxes), dtype=np.int32)) self.assigned_gt_ignores = Tensor( np.full(num_bboxes, -1, dtype=np.int32)) self.assigned_pos_ones = Tensor( np.array(np.ones(self.num_expected_pos), dtype=np.int32)) self.gt_ignores = Tensor(np.full(self.num_gts, -1, dtype=np.int32)) self.range_pos_size = Tensor( np.arange(self.num_expected_pos).astype(self.dtype)) self.check_neg_mask = Tensor( np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) self.bboxs_neg_mask = Tensor( np.zeros((self.num_expected_neg, 4), dtype=self.dtype)) self.labels_neg_mask = Tensor( np.array(np.zeros(self.num_expected_neg), dtype=np.uint8)) self.reshape_shape_pos = (self.num_expected_pos, 1) self.reshape_shape_neg = (self.num_expected_neg, 1) self.scalar_zero = Tensor(0.0, dtype=self.ms_type) self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=self.ms_type) self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=self.ms_type) self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=self.ms_type)
def __init__(self): super(GatherNdNet, self).__init__() self.gathernd = P.GatherNd()
def __init__(self, config): super(Deeptext_VGG16, self).__init__() self.train_batch_size = config.batch_size self.num_classes = config.num_classes self.anchor_scales = config.anchor_scales self.anchor_ratios = config.anchor_ratios self.anchor_strides = config.anchor_strides self.target_means = tuple(config.rcnn_target_means) self.target_stds = tuple(config.rcnn_target_stds) # Anchor generator anchor_base_sizes = None self.anchor_base_sizes = list( self.anchor_strides ) if anchor_base_sizes is None else anchor_base_sizes self.anchor_generators = [] for anchor_base in self.anchor_base_sizes: self.anchor_generators.append( AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios)) self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales) featmap_sizes = config.feature_shapes assert len(featmap_sizes) == len(self.anchor_generators) self.anchor_list = self.get_anchors(featmap_sizes) # Rpn and rpn loss self.gt_labels_stage1 = Tensor( np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8)) self.rpn_with_loss = RPN(config, self.train_batch_size, config.rpn_in_channels, config.rpn_feat_channels, config.num_anchors, config.rpn_cls_out_channels) # Proposal self.proposal_generator = Proposal(config, self.train_batch_size, config.activate_num_classes, config.use_sigmoid_cls) self.proposal_generator.set_train_local(config, True) self.proposal_generator_test = Proposal(config, config.test_batch_size, config.activate_num_classes, config.use_sigmoid_cls) self.proposal_generator_test.set_train_local(config, False) # Assign and sampler stage two self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn( config, self.train_batch_size, config.num_bboxes_stage2, True) self.decode = P.BoundingBoxDecode(max_shape=(576, 960), means=self.target_means, \ stds=self.target_stds) # Rcnn self.rcnn = Rcnn( config, config.rcnn_in_channels * config.roi_layer['out_size'] * config.roi_layer['out_size'], self.train_batch_size, self.num_classes) # Op declare self.squeeze = P.Squeeze() self.cast = P.Cast() self.concat = P.Concat(axis=0) self.concat_1 = P.Concat(axis=1) self.concat_2 = P.Concat(axis=2) self.reshape = P.Reshape() self.select = P.Select() self.greater = P.Greater() self.transpose = P.Transpose() # Test mode self.test_batch_size = config.test_batch_size self.split = P.Split(axis=0, output_num=self.test_batch_size) self.split_shape = P.Split(axis=0, output_num=4) self.split_scores = P.Split(axis=1, output_num=self.num_classes) self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1) self.tile = P.Tile() self.gather = P.GatherNd() self.rpn_max_num = config.rpn_max_num self.zeros_for_nms = Tensor( np.zeros((self.rpn_max_num, 3)).astype(np.float32)) self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool) self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool) self.bbox_mask = Tensor( np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask, self.zeros_mask), axis=1)) self.nms_pad_mask = Tensor( np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask, self.ones_mask, self.zeros_mask), axis=1)) self.test_score_thresh = Tensor( np.ones((self.rpn_max_num, 1)).astype(np.float32) * config.test_score_thr) self.test_score_zeros = Tensor( np.ones((self.rpn_max_num, 1)).astype(np.float32) * 0) self.test_box_zeros = Tensor( np.ones((self.rpn_max_num, 4)).astype(np.float32) * -1) self.test_iou_thr = Tensor( np.ones((self.rpn_max_num, 1)).astype(np.float32) * config.test_iou_thr) self.test_max_per_img = config.test_max_per_img self.nms_test = P.NMSWithMask(config.test_iou_thr) self.softmax = P.Softmax(axis=1) self.logicand = P.LogicalAnd() self.oneslike = P.OnesLike() self.test_topk = P.TopK(sorted=True) self.test_num_proposal = self.test_batch_size * self.rpn_max_num # Improve speed self.concat_start = (self.num_classes - 2) self.concat_end = (self.num_classes - 1) # Init tensor self.use_ambigous_sample = config.use_ambigous_sample roi_align_index = [ np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i, dtype=np.float32) for i in range(self.train_batch_size) ] if self.use_ambigous_sample: roi_align_index = [ np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_amb_stage2 + config.num_expected_neg_stage2, 1)) * i, dtype=np.float32) for i in range(self.train_batch_size) ] roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float32) \ for i in range(self.test_batch_size)] self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index)) self.roi_align_index_test_tensor = Tensor( np.concatenate(roi_align_index_test)) self.roi_align4 = P.ROIAlign(pooled_width=7, pooled_height=7, spatial_scale=0.125) self.roi_align5 = P.ROIAlign(pooled_width=7, pooled_height=7, spatial_scale=0.0625) self.concat1 = P.Concat(axis=1) self.roi_align_fuse = _conv(in_channels=1024, out_channels=512, kernel_size=1, padding=0, stride=1) self.vgg16_feature_extractor = VGG16FeatureExtraction()
def __init__(self, config): super(Mask_Rcnn_Resnet50, self).__init__() self.train_batch_size = config.batch_size self.num_classes = config.num_classes self.anchor_scales = config.anchor_scales self.anchor_ratios = config.anchor_ratios self.anchor_strides = config.anchor_strides self.target_means = tuple(config.rcnn_target_means) self.target_stds = tuple(config.rcnn_target_stds) # Anchor generator anchor_base_sizes = None self.anchor_base_sizes = list( self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes self.anchor_generators = [] for anchor_base in self.anchor_base_sizes: self.anchor_generators.append( AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios)) self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales) featmap_sizes = config.feature_shapes assert len(featmap_sizes) == len(self.anchor_generators) self.anchor_list = self.get_anchors(featmap_sizes) # Backbone resnet50 self.backbone = ResNetFea(ResidualBlockUsing, config.resnet_block, config.resnet_in_channels, config.resnet_out_channels, False) # Fpn self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels, config.fpn_out_channels, config.fpn_num_outs) # Rpn and rpn loss self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8)) self.rpn_with_loss = RPN(config, self.train_batch_size, config.rpn_in_channels, config.rpn_feat_channels, config.num_anchors, config.rpn_cls_out_channels) # Proposal self.proposal_generator = Proposal(config, self.train_batch_size, config.activate_num_classes, config.use_sigmoid_cls) self.proposal_generator.set_train_local(config, True) self.proposal_generator_test = Proposal(config, config.test_batch_size, config.activate_num_classes, config.use_sigmoid_cls) self.proposal_generator_test.set_train_local(config, False) # Assign and sampler stage two self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size, config.num_bboxes_stage2, True) self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \ stds=self.target_stds) # Roi self.roi_align = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels, config.roi_align_featmap_strides, self.train_batch_size, config.roi_align_finest_scale, mask=False) self.roi_align.set_train_local(config, True) self.roi_align_mask = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels, config.roi_align_featmap_strides, self.train_batch_size, config.roi_align_finest_scale, mask=True) self.roi_align_mask.set_train_local(config, True) self.roi_align_test = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels, config.roi_align_featmap_strides, 1, config.roi_align_finest_scale, mask=False) self.roi_align_test.set_train_local(config, False) self.roi_align_mask_test = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels, config.roi_align_featmap_strides, 1, config.roi_align_finest_scale, mask=True) self.roi_align_mask_test.set_train_local(config, False) # Rcnn self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes) self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes) # Op declare self.squeeze = P.Squeeze() self.cast = P.Cast() self.concat = P.Concat(axis=0) self.concat_1 = P.Concat(axis=1) self.concat_2 = P.Concat(axis=2) self.reshape = P.Reshape() self.select = P.Select() self.greater = P.Greater() self.transpose = P.Transpose() # Test mode self.test_batch_size = config.test_batch_size self.split = P.Split(axis=0, output_num=self.test_batch_size) self.split_shape = P.Split(axis=0, output_num=4) self.split_scores = P.Split(axis=1, output_num=self.num_classes) self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes) self.split_cls = P.Split(axis=0, output_num=self.num_classes-1) self.tile = P.Tile() self.gather = P.GatherNd() self.rpn_max_num = config.rpn_max_num self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16)) self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool) self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool) self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask, self.zeros_mask), axis=1)) self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask, self.ones_mask, self.zeros_mask), axis=1)) self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr) self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0) self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1) self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr) self.test_max_per_img = config.test_max_per_img self.nms_test = P.NMSWithMask(config.test_iou_thr) self.softmax = P.Softmax(axis=1) self.logicand = P.LogicalAnd() self.oneslike = P.OnesLike() self.test_topk = P.TopK(sorted=True) self.test_num_proposal = self.test_batch_size * self.rpn_max_num # Improve speed self.concat_start = min(self.num_classes - 2, 55) self.concat_end = (self.num_classes - 1) # Init tensor roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i, dtype=np.float16) for i in range(self.train_batch_size)] roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \ for i in range(self.test_batch_size)] self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index)) self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test)) roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i, dtype=np.float16) for i in range(self.train_batch_size)] self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos)) self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(np.float16)) self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(np.float16)) self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(np.float16)) self.argmax_with_value = P.ArgMaxWithValue(axis=1) self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.onehot = P.OneHot() self.reducesum = P.ReduceSum() self.sigmoid = P.Sigmoid() self.expand_dims = P.ExpandDims() self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(np.float16)) self.value = Tensor(1.0, mstype.float16)
def __init__(self, w1, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.w1 = Parameter(w1, "w1") self.indices = Tensor(np.ones([16, 2]), dtype=ms.int32) self.gathernd = P.GatherNd().shard(strategy2)
def __init__(self, config, representation_size, batch_size, num_classes, target_means=(0., 0., 0., 0.), target_stds=(0.1, 0.1, 0.2, 0.2)): super(Rcnn, self).__init__() cfg = config self.rcnn_loss_cls_weight = Tensor( np.array(cfg.rcnn_loss_cls_weight).astype(np.float16)) self.rcnn_loss_reg_weight = Tensor( np.array(cfg.rcnn_loss_reg_weight).astype(np.float16)) self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels self.target_means = target_means self.target_stds = target_stds self.num_classes = num_classes self.in_channels = cfg.rcnn_in_channels self.train_batch_size = batch_size self.test_batch_size = cfg.test_batch_size self.use_ambigous_sample = cfg.use_ambigous_sample shape_0 = (self.rcnn_fc_out_channels, representation_size) weights_0 = initializer("XavierUniform", shape=shape_0[::-1], dtype=mstype.float16).to_tensor() shape_1 = (self.rcnn_fc_out_channels, self.rcnn_fc_out_channels) weights_1 = initializer("XavierUniform", shape=shape_1[::-1], dtype=mstype.float16).to_tensor() self.shared_fc_0 = DenseNoTranpose(representation_size, self.rcnn_fc_out_channels, weights_0) self.shared_fc_1 = DenseNoTranpose(self.rcnn_fc_out_channels, self.rcnn_fc_out_channels, weights_1) cls_weight = initializer( 'Normal', shape=[num_classes, self.rcnn_fc_out_channels][::-1], dtype=mstype.float16).to_tensor() reg_weight = initializer( 'Normal', shape=[num_classes * 4, self.rcnn_fc_out_channels][::-1], dtype=mstype.float16).to_tensor() self.cls_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes, cls_weight) self.reg_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes * 4, reg_weight) self.flatten = P.Flatten() self.relu = P.ReLU() self.logicaland = P.LogicalAnd() self.loss_cls = P.SoftmaxCrossEntropyWithLogits() self.loss_bbox = P.SmoothL1Loss(beta=1.0) self.reshape = P.Reshape() self.onehot = P.OneHot() self.greater = P.Greater() self.equal = P.Equal() self.cast = P.Cast() self.sum_loss = P.ReduceSum() self.tile = P.Tile() self.expandims = P.ExpandDims() self.gather = P.GatherNd() self.argmax = P.ArgMaxWithValue(axis=1) self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.value = Tensor(1.0, mstype.float16) self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_neg_stage2) * batch_size if self.use_ambigous_sample: self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_amb_stage2 + cfg.num_expected_neg_stage2) * batch_size rmv_first = np.ones((self.num_bboxes, self.num_classes)) rmv_first[:, 0] = np.zeros((self.num_bboxes, )) self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16)) self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size range_max = np.arange(self.num_bboxes_test).astype(np.int32) self.range_max = Tensor(range_max)
def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): super(BboxAssignSampleForRcnn, self).__init__() cfg = config self.batch_size = batch_size self.neg_iou_thr = cfg.neg_iou_thr_stage2 self.pos_iou_thr = cfg.pos_iou_thr_stage2 self.min_pos_iou = cfg.min_pos_iou_stage2 self.num_gts = cfg.num_gts self.num_bboxes = num_bboxes self.num_expected_pos = cfg.num_expected_pos_stage2 self.num_expected_neg = cfg.num_expected_neg_stage2 self.num_expected_total = cfg.num_expected_total_stage2 self.add_gt_as_proposals = add_gt_as_proposals self.label_inds = Tensor( np.arange(1, self.num_gts + 1).astype(np.int32)) self.add_gt_as_proposals_valid = Tensor( np.array(self.add_gt_as_proposals * np.ones(self.num_gts), dtype=np.int32)) self.concat = P.Concat(axis=0) self.max_gt = P.ArgMaxWithValue(axis=0) self.max_anchor = P.ArgMaxWithValue(axis=1) self.sum_inds = P.ReduceSum() self.iou = P.IOU() self.greaterequal = P.GreaterEqual() self.greater = P.Greater() self.select = P.Select() self.gatherND = P.GatherNd() self.squeeze = P.Squeeze() self.cast = P.Cast() self.logicaland = P.LogicalAnd() self.less = P.Less() self.random_choice_with_mask_pos = P.RandomChoiceWithMask( self.num_expected_pos) self.random_choice_with_mask_neg = P.RandomChoiceWithMask( self.num_expected_neg) self.reshape = P.Reshape() self.equal = P.Equal() self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(0.1, 0.1, 0.2, 0.2)) self.concat_axis1 = P.Concat(axis=1) self.logicalnot = P.LogicalNot() self.tile = P.Tile() # Check self.check_gt_one = Tensor( np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) self.check_anchor_two = Tensor( np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) # Init tensor self.assigned_gt_inds = Tensor( np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) self.assigned_gt_zeros = Tensor( np.array(np.zeros(num_bboxes), dtype=np.int32)) self.assigned_gt_ones = Tensor( np.array(np.ones(num_bboxes), dtype=np.int32)) self.assigned_gt_ignores = Tensor( np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) self.assigned_pos_ones = Tensor( np.array(np.ones(self.num_expected_pos), dtype=np.int32)) self.gt_ignores = Tensor( np.array(-1 * np.ones(self.num_gts), dtype=np.int32)) self.range_pos_size = Tensor( np.arange(self.num_expected_pos).astype(np.float16)) self.check_neg_mask = Tensor( np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) self.bboxs_neg_mask = Tensor( np.zeros((self.num_expected_neg, 4), dtype=np.float16)) self.labels_neg_mask = Tensor( np.array(np.zeros(self.num_expected_neg), dtype=np.uint8)) self.reshape_shape_pos = (self.num_expected_pos, 1) self.reshape_shape_neg = (self.num_expected_neg, 1) self.scalar_zero = Tensor(0.0, dtype=mstype.float16) self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=mstype.float16) self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=mstype.float16) self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=mstype.float16) self.expand_dims = P.ExpandDims() self.split = P.Split(axis=1, output_num=4) self.concat_last_axis = P.Concat(axis=-1) self.round = P.Round() self.image_h_w = Tensor( [cfg.img_height, cfg.img_width, cfg.img_height, cfg.img_width], dtype=mstype.float16) self.range = nn.Range(start=0, limit=cfg.num_expected_pos_stage2) self.crop_and_resize = P.CropAndResize(method="bilinear_v2") self.mask_shape = (cfg.mask_shape[0], cfg.mask_shape[1]) self.squeeze_mask_last = P.Squeeze(axis=-1)
def __init__(self, batch_size, seq_length, vocab_size, decoder, beam_width=4, length_penalty_weight=1.0, max_decode_length=128, sos_id=1, eos_id=2, compute_type=mstype.float32): super(BeamSearchDecoder, self).__init__(auto_prefix=False) self.seq_length = seq_length self.batch_size = batch_size self.vocab_size = vocab_size self.beam_width = beam_width self.length_penalty_weight = length_penalty_weight self.max_decode_length = max_decode_length self.decoder = decoder self.add = P.TensorAdd() self.expand = P.ExpandDims() self.reshape = P.Reshape() self.shape_flat = (-1, ) self.shape = P.Shape() self.zero_tensor = Tensor(np.zeros([batch_size, beam_width]), mstype.float32) self.ninf_tensor = Tensor(np.full([batch_size, beam_width], -INF), mstype.float32) self.select = P.Select() self.flat_shape = (batch_size, beam_width * vocab_size) self.topk = P.TopK(sorted=True) self.floor_div = P.FloorDiv() self.vocab_size_tensor = Tensor(self.vocab_size, mstype.int32) self.real_div = P.RealDiv() self.mod = Mod() self.equal = P.Equal() self.eos_ids = Tensor(np.full([batch_size, beam_width], eos_id), mstype.int32) beam_ids = np.tile( np.arange(beam_width).reshape((1, beam_width)), [batch_size, 1]) self.beam_ids = Tensor(beam_ids, mstype.int32) batch_ids = np.arange(batch_size * beam_width).reshape( (batch_size, beam_width)) // beam_width self.batch_ids = Tensor(batch_ids, mstype.int32) self.concat = P.Concat(axis=-1) self.gather_nd = P.GatherNd() self.greater_equal = P.GreaterEqual() self.sub = P.Sub() self.cast = P.Cast() self.zeroslike = P.ZerosLike() # init inputs and states self.start_ids = Tensor(np.full([batch_size * beam_width, 1], sos_id), mstype.int32) self.init_seq = Tensor(np.full([batch_size, beam_width, 1], sos_id), mstype.int32) init_scores = np.tile(np.array([[0.] + [-INF] * (beam_width - 1)]), [batch_size, 1]) self.init_scores = Tensor(init_scores, mstype.float32) self.init_finished = Tensor( np.zeros([batch_size, beam_width], dtype=np.bool)) self.init_length = Tensor( np.zeros([batch_size, beam_width], dtype=np.int32)) self.length_penalty = LengthPenalty(weight=length_penalty_weight) self.one = Tensor(1, mstype.int32)
'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward'] }), ('BoundingBoxDecode', { 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)), 'desc_inputs': [[256, 4], [256, 4]], 'desc_bprop': [[256, 4]], 'skip': ['backward'] }), ('GatherNd', { 'block': P.GatherNd(), 'desc_inputs': (Tensor(np.ones( (1, 3, 6, 6), np.float32)), Tensor(np.ones((2, 4), np.int32))), 'desc_bprop': [[2]] }), ('ScatterNdUpdate', { 'block': P.ScatterNdUpdate(), 'desc_inputs': (Tensor(np.ones( (2, 3), np.float32)), Tensor(np.ones( (2, 2), np.int32)), Tensor(np.ones((2, ), np.float32))), 'desc_bprop': [[2, 3]] }), ('ScatterNd', { 'block': P.ScatterNd(),