Exemple #1
0
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)
                 ):
        super(RcnnMask, self).__init__()
        cfg = config
        self.rcnn_loss_mask_fb_weight = Tensor(np.array(cfg.rcnn_loss_mask_fb_weight).astype(np.float16))
        self.rcnn_mask_out_channels = cfg.rcnn_mask_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels

        self.fpn_mask = FpnMask(self.in_channels, self.rcnn_mask_out_channels, self.num_classes)

        self.logicaland = P.LogicalAnd()
        self.loss_mask = P.SigmoidCrossEntropyWithLogits()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)

        self.num_bboxes = cfg.num_expected_pos_stage2 * batch_size
        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes,))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))
        self.mean_loss = P.ReduceMean()
Exemple #2
0
    def __init__(self, config, batch_size, in_channels, feat_channels,
                 num_anchors, cls_out_channels):
        super(RPN, self).__init__()
        cfg_rpn = config
        self.dtype = np.float32
        self.ms_type = mstype.float32
        self.num_bboxes = cfg_rpn.num_bboxes
        self.slice_index = ()
        self.feature_anchor_shape = ()
        self.slice_index += (0, )
        index = 0
        for shape in cfg_rpn.feature_shapes:
            self.slice_index += (self.slice_index[index] +
                                 shape[0] * shape[1] * num_anchors, )
            self.feature_anchor_shape += (shape[0] * shape[1] * num_anchors *
                                          batch_size, )
            index += 1

        self.num_anchors = num_anchors
        self.batch_size = batch_size
        self.test_batch_size = cfg_rpn.test_batch_size
        self.num_layers = 5
        self.real_ratio = Tensor(np.ones((1, 1)).astype(self.dtype))

        self.rpn_convs_list = nn.layer.CellList(
            self._make_rpn_layer(self.num_layers, in_channels, feat_channels,
                                 num_anchors, cls_out_channels))

        self.transpose = P.Transpose()
        self.reshape = P.Reshape()
        self.concat = P.Concat(axis=0)
        self.fill = P.Fill()
        self.placeh1 = Tensor(np.ones((1, )).astype(self.dtype))

        self.trans_shape = (0, 2, 3, 1)

        self.reshape_shape_reg = (-1, 4)
        self.reshape_shape_cls = (-1, )
        self.rpn_loss_reg_weight = Tensor(
            np.array(cfg_rpn.rpn_loss_reg_weight).astype(self.dtype))
        self.rpn_loss_cls_weight = Tensor(
            np.array(cfg_rpn.rpn_loss_cls_weight).astype(self.dtype))
        self.num_expected_total = Tensor(
            np.array(cfg_rpn.num_expected_neg * self.batch_size).astype(
                self.dtype))
        self.num_bboxes = cfg_rpn.num_bboxes
        self.get_targets = BboxAssignSample(cfg_rpn, self.batch_size,
                                            self.num_bboxes, False)
        self.CheckValid = P.CheckValid()
        self.sum_loss = P.ReduceSum()
        self.loss_cls = P.SigmoidCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0 / 9.0)
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.tile = P.Tile()
        self.zeros_like = P.ZerosLike()
        self.loss = Tensor(np.zeros((1, )).astype(self.dtype))
        self.clsloss = Tensor(np.zeros((1, )).astype(self.dtype))
        self.regloss = Tensor(np.zeros((1, )).astype(self.dtype))
Exemple #3
0
 def __init__(self, network, l2_coef=1e-6):
     super(NetWithLossClass, self).__init__(auto_prefix=False)
     self.loss = P.SigmoidCrossEntropyWithLogits()
     self.network = network
     self.l2_coef = l2_coef
     self.Square = P.Square()
     self.ReduceMean_false = P.ReduceMean(keep_dims=False)
     self.ReduceSum_false = P.ReduceSum(keep_dims=False)
Exemple #4
0
 def __init__(self, network, config):
     super(NetWithLossClass, self).__init__(auto_prefix=False)
     self.network = network
     self.l2_coef = config.l2_coef
     self.loss = P.SigmoidCrossEntropyWithLogits()
     self.square = P.Square().set_strategy(((1, get_group_size()),))
     self.reduceMean_false = P.ReduceMean(keep_dims=False)
     self.reduceSum_false = P.ReduceSum(keep_dims=False)
Exemple #5
0
    def __init__(self, config, batch_size, in_channels, feat_channels,
                 num_anchors, cls_out_channels):
        super(RPN, self).__init__()
        cfg_rpn = config
        self.cfg = config
        self.num_bboxes = cfg_rpn.num_bboxes
        self.feature_anchor_shape = cfg_rpn.feature_shapes
        self.feature_anchor_shape = self.feature_anchor_shape[0] * \
            self.feature_anchor_shape[1] * num_anchors * batch_size
        self.num_anchors = num_anchors
        self.batch_size = batch_size
        self.test_batch_size = cfg_rpn.test_batch_size
        self.num_layers = 1
        self.real_ratio = Tensor(np.ones((1, 1)).astype(np.float16))
        self.use_sigmoid_cls = config.use_sigmoid_cls
        if config.use_sigmoid_cls:
            self.reshape_shape_cls = (-1, )
            self.loss_cls = P.SigmoidCrossEntropyWithLogits()
            cls_out_channels = 1
        else:
            self.reshape_shape_cls = (-1, cls_out_channels)
            self.loss_cls = nn.SoftmaxCrossEntropyWithLogits(sparse=True,
                                                             reduction="none")
        self.rpn_convs_list = self._make_rpn_layer(self.num_layers, in_channels, feat_channels,\
            num_anchors, cls_out_channels)

        self.transpose = P.Transpose()
        self.reshape = P.Reshape()
        self.concat = P.Concat(axis=0)
        self.fill = P.Fill()
        self.placeh1 = Tensor(np.ones((1, )).astype(np.float16))

        self.trans_shape = (0, 2, 3, 1)

        self.reshape_shape_reg = (-1, 4)
        self.softmax = nn.Softmax()
        self.rpn_loss_reg_weight = Tensor(
            np.array(cfg_rpn.rpn_loss_reg_weight).astype(np.float16))
        self.rpn_loss_cls_weight = Tensor(
            np.array(cfg_rpn.rpn_loss_cls_weight).astype(np.float16))
        self.num_expected_total = Tensor(
            np.array(cfg_rpn.num_expected_neg * self.batch_size).astype(
                np.float16))
        self.num_bboxes = cfg_rpn.num_bboxes
        self.get_targets = BboxAssignSample(cfg_rpn, self.batch_size,
                                            self.num_bboxes, False)
        self.CheckValid = P.CheckValid()
        self.sum_loss = P.ReduceSum()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0 / 9.0)
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.tile = P.Tile()
        self.zeros_like = P.ZerosLike()
        self.loss = Tensor(np.zeros((1, )).astype(np.float16))
        self.clsloss = Tensor(np.zeros((1, )).astype(np.float16))
        self.regloss = Tensor(np.zeros((1, )).astype(np.float16))
        self.print = P.Print()
Exemple #6
0
 def __init__(self, gamma=2.0, alpha=0.25):
     super(SigmoidFocalClassificationLoss, self).__init__()
     self.sigmiod_cross_entropy = P.SigmoidCrossEntropyWithLogits()
     self.sigmoid = P.Sigmoid()
     self.pow = P.Pow()
     self.onehot = P.OneHot()
     self.on_value = Tensor(1.0, mstype.float32)
     self.off_value = Tensor(0.0, mstype.float32)
     self.gamma = gamma
     self.alpha = alpha
Exemple #7
0
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)):
        super(RcnnCls, self).__init__()
        cfg = config
        self.rcnn_loss_cls_weight = Tensor(
            np.array(cfg.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(
            np.array(cfg.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels
        self.train_batch_size = batch_size
        self.test_batch_size = cfg.test_batch_size

        self.fpn_cls = FpnCls(self.in_channels, self.rcnn_fc_out_channels,
                              self.num_classes, cfg.roi_layer["out_size"])
        self.relu = P.ReLU()
        self.logicaland = P.LogicalAnd()
        self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0)
        self.loss_mask = P.SigmoidCrossEntropyWithLogits()
        self.reshape = P.Reshape()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.gather = P.GatherNd()
        self.argmax = P.ArgMaxWithValue(axis=1)

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.value = Tensor(1.0, mstype.float16)

        self.num_bboxes = (cfg.num_expected_pos_stage2 +
                           cfg.num_expected_neg_stage2) * batch_size

        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes, ))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))

        self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size
 def __init__(self, network, config):
     super(NetWithLossClass, self).__init__(auto_prefix=False)
     host_device_mix = bool(config.host_device_mix)
     parameter_server = bool(config.parameter_server)
     parallel_mode = context.get_auto_parallel_context("parallel_mode")
     is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
     self.no_l2loss = (is_auto_parallel if (host_device_mix or config.field_slice) else parameter_server)
     self.network = network
     self.l2_coef = config.l2_coef
     self.loss = P.SigmoidCrossEntropyWithLogits()
     self.square = P.Square()
     self.reduceMean_false = P.ReduceMean(keep_dims=False)
     if is_auto_parallel:
         self.reduceMean_false.add_prim_attr("cross_batch", True)
     self.reduceSum_false = P.ReduceSum(keep_dims=False)
Exemple #9
0
 def __init__(self, scale, config):
     super(YoloLossBlock, self).__init__()
     self.config = config
     if scale == 's':
         idx = (0, 1, 2)
     elif scale == 'm':
         idx = (3, 4, 5)
     elif scale == 'l':
         idx = (6, 7, 8)
     else:
         raise KeyError("Invalid scale value for DetectionBlock")
     self.anchors = Tensor([self.config.anchor_scales[i] for i in idx], ms.float32)
     self.ignore_threshold = Tensor(self.config.ignore_threshold, ms.float32)
     self.concat = P.Concat(axis=-1)
     self.iou = Iou()
     self.cross_entropy = P.SigmoidCrossEntropyWithLogits()
     self.reduce_sum = P.ReduceSum()
     self.reduce_max = P.ReduceMax(keep_dims=False)
     self.input_shape = Tensor(tuple(config.img_shape[::-1]), ms.float32)
Exemple #10
0
 def __init__(self):
     super(NetSigmoidCrossEntropyWithLogits, self).__init__()
     self.loss = P.SigmoidCrossEntropyWithLogits()
Exemple #11
0
    def __init__(self, num_classes, anchors, anchors_mask, reduction=32, seen=0, coord_scale=1.0, no_object_scale=1.0,
                 object_scale=1.0, class_scale=1.0, thresh=0.5, head_idx=0.0):
        super(YoloLoss, self).__init__()
        self.num_classes = num_classes
        self.num_anchors = len(anchors_mask)
        self.anchor_step = len(anchors[0])  # each scale has step anchors
        self.anchors = np.array(anchors, dtype=np.float32) / reduction  # scale every anchor for every scale
        self.tensor_anchors = Tensor(self.anchors, mstype.float32)
        self.anchors_mask = anchors_mask
        anchors_w = []
        anchors_h = []
        for i in range(len(anchors_mask)):
            anchors_w.append(self.anchors[self.anchors_mask[i]][0])
            anchors_h.append(self.anchors[self.anchors_mask[i]][1])
        self.anchors_w = Tensor(np.array(anchors_w).reshape(len(self.anchors_mask), 1))
        self.anchors_h = Tensor(np.array(anchors_h).reshape(len(self.anchors_mask), 1))

        self.reduction = reduction
        self.seen = seen
        self.head_idx = head_idx
        self.zero = Tensor(0)
        self.coord_scale = coord_scale
        self.no_object_scale = no_object_scale
        self.object_scale = object_scale
        self.class_scale = class_scale
        self.thresh = thresh

        self.info = {'avg_iou': 0, 'class': 0, 'obj': 0, 'no_obj': 0,
                     'recall50': 0, 'recall75': 0, 'obj_cur': 0, 'obj_all': 0,
                     'coord_xy': 0, 'coord_wh': 0}

        self.shape = P.Shape()
        self.reshape = P.Reshape()
        self.sigmoid = P.Sigmoid()
        self.zeros_like = P.ZerosLike()


        self.concat0 = P.Concat(0)
        self.concat0_2 = P.Concat(0)
        self.concat0_3 = P.Concat(0)
        self.concat0_4 = P.Concat(0)
        self.concat1 = P.Concat(1)
        self.concat1_2 = P.Concat(1)
        self.concat1_3 = P.Concat(1)
        self.concat1_4 = P.Concat(1)
        self.concat2 = P.Concat(2)
        self.concat2_2 = P.Concat(2)
        self.concat2_3 = P.Concat(2)
        self.concat2_4 = P.Concat(2)

        self.tile = P.Tile()
        self.transpose = P.Transpose()


        self.cast = P.Cast()
        self.exp = P.Exp()
        self.sum = P.ReduceSum()




        self.smooth_l1_loss = P.SmoothL1Loss()









        self.bce = P.SigmoidCrossEntropyWithLogits()
        self.ce = P.SoftmaxCrossEntropyWithLogits()

        self.pt_linspace = PtLinspace()
        self.one_hot = nn.OneHot(-1, self.num_classes, 1.0, 0.0)
        self.squeeze_2 = P.Squeeze(2)


        self.reduce_sum = P.ReduceSum()



        self.select = P.Select()
        self.iou = P.IOU()
Exemple #12
0
 def __init__(self, mul_weight, strategy1=None, strategy2=None):
     super().__init__()
     self.mul = P.Mul().shard(strategy1)
     self.loss = P.SigmoidCrossEntropyWithLogits().shard(strategy2)
     self.mul_weight = Parameter(mul_weight, "w1")
Exemple #13
0
 def __init__(self):
     super(ClassLoss, self).__init__()
     self.cross_entropy = P.SigmoidCrossEntropyWithLogits()
     self.reduce_sum = P.ReduceSum()
Exemple #14
0
 def __init__(self):
     super(Loss, self).__init__()
     self.sigmoid_cross_entropy_with_logits = P.SigmoidCrossEntropyWithLogits(
     )
     self.reduce_mean = P.ReduceMean(keep_dims=False)
Exemple #15
0
 def __init__(self):
     super(Net, self).__init__()
     self.sigmoid_cross_entropy_with_logits = P.SigmoidCrossEntropyWithLogits(
     )
Exemple #16
0
     'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
 }),
 ('Softmax', {
     'block': P.Softmax(),
     'desc_inputs': [[5, 5]],
     'desc_bprop': [[5, 5]]}),
 ('DepthwiseConv2dNative_1', {
     'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
     'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
     'desc_bprop': [[10, 32, 16, 16]]}),
 ('DepthwiseConv2dNative_2', {
     'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
     'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
     'desc_bprop': [[2592, 2048, 4, 4]]}),
 ('SigmoidCrossEntropyWithLogits', {
     'block': P.SigmoidCrossEntropyWithLogits(),
     'desc_inputs': [[128, 10], [128, 10]],
     'desc_bprop': [[128, 10]]}),
 ('Pad', {
     'block': P.Pad(((1, 2), (2, 3))),
     'desc_inputs': [[7, 7]],
     'desc_bprop': [[10, 12]]}),
 ('BinaryCrossEntropy', {
     'block': P.BinaryCrossEntropy(),
     'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
     'desc_bprop': []}),
 ('SparseApplyAdagrad', {
     'block': P.SparseApplyAdagrad(0.5),
     'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
     'desc_bprop': [3, 3],
     'skip': ['backward']}),
Exemple #17
0
 def __init__(self):
     super(SigmoidCrossEntropyWithLogits, self).__init__()
     self.cross_entropy = P.SigmoidCrossEntropyWithLogits()