Exemple #1
0
def get_pricing(m, w, L):
    # creating the pricing problem
    pricing = Model()

    # creating pricing variables
    a = []
    for i in range(m):
        a.append(
            pricing.add_var(obj=0, var_type=INTEGER, name='a_%d' % (i + 1)))

    # creating pricing constraint
    pricing.add_constr(xsum(w[i] * a[i] for i in range(m)) <= L, 'bar_length')

    pricing.write('pricing.lp')

    return a, pricing
Exemple #2
0
def kantorovich():
    """
    Simple implementation of the compact formulation from Kantorovich for the problem
    """

    N = 10  # maximum number of bars
    L = 250  # bar length
    m = 4  # number of requests
    w = [187, 119, 74, 90]  # size of each item
    b = [1, 2, 2, 1]  # demand for each item

    # creating the model (note that the linear relaxation is solved)
    model = Model(SOLVER)
    x = {(i, j): model.add_var(obj=0, var_type=CONTINUOUS, name="x[%d,%d]" % (i, j)) for i in range(m) for j in range(N)}
    y = {j: model.add_var(obj=1, var_type=CONTINUOUS, name="y[%d]" % j) for j in range(N)}

    # constraints
    for i in range(m):
        model.add_constr(xsum(x[i, j] for j in range(N)) >= b[i])
        for j in range(N):
            model.add_constr(xsum(w[i] * x[i, j] for i in range(m)) <= L * y[j])

    # additional constraint to reduce symmetry
    for j in range(1, N):
        model.add_constr(y[j - 1] >= y[j])

    # optimizing the model and printing solution
    model.optimize()
    print_solution(model)
Exemple #3
0
def test_tsp_mipstart(solver: str):
    """tsp related tests"""
    announce_test("TSP - MIPStart", solver)
    N = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
    n = len(N)
    i0 = N[0]

    A = {
        ('a', 'd'): 56,
        ('d', 'a'): 67,
        ('a', 'b'): 49,
        ('b', 'a'): 50,
        ('d', 'b'): 39,
        ('b', 'd'): 37,
        ('c', 'f'): 35,
        ('f', 'c'): 35,
        ('g', 'b'): 35,
        ('b', 'g'): 25,
        ('a', 'c'): 80,
        ('c', 'a'): 99,
        ('e', 'f'): 20,
        ('f', 'e'): 20,
        ('g', 'e'): 38,
        ('e', 'g'): 49,
        ('g', 'f'): 37,
        ('f', 'g'): 32,
        ('b', 'e'): 21,
        ('e', 'b'): 30,
        ('a', 'g'): 47,
        ('g', 'a'): 68,
        ('d', 'c'): 37,
        ('c', 'd'): 52,
        ('d', 'e'): 15,
        ('e', 'd'): 20
    }

    # input and output arcs per node
    Aout = {n: [a for a in A if a[0] == n] for n in N}
    Ain = {n: [a for a in A if a[1] == n] for n in N}
    m = Model(solver_name=solver)
    m.verbose = 0

    x = {
        a: m.add_var(name='x({},{})'.format(a[0], a[1]), var_type=BINARY)
        for a in A
    }

    m.objective = xsum(c * x[a] for a, c in A.items())

    for i in N:
        m += xsum(x[a] for a in Aout[i]) == 1, 'out({})'.format(i)
        m += xsum(x[a] for a in Ain[i]) == 1, 'in({})'.format(i)

    # continuous variable to prevent subtours: each
    # city will have a different "identifier" in the planned route
    y = {i: m.add_var(name='y({})'.format(i), lb=0.0) for i in N}

    # subtour elimination
    for (i, j) in A:
        if i0 not in [i, j]:
            m.add_constr(y[i] - (n + 1) * x[(i, j)] >= y[j] - n)

    route = ['a', 'g', 'f', 'c', 'd', 'e', 'b', 'a']
    m.start = [(x[route[i - 1], route[i]], 1.0) for i in range(1, len(route))]
    m.optimize()

    check_result("mip model status", m.status == OptimizationStatus.OPTIMAL)
    check_result("mip model objective",
                 (abs(m.objective_value - 262)) <= 0.0001)
    print('')
Exemple #4
0
def cg():
    """
    Simple column generation implementation for a Cutting Stock Problem
    """

    L = 250  # bar length
    m = 4  # number of requests
    w = [187, 119, 74, 90]  # size of each item
    b = [1, 2, 2, 1]  # demand for each item

    # creating models and auxiliary lists
    master = Model()
    lambdas = []
    constraints = []

    # creating an initial pattern (which cut one item per bar)
    # to provide the restricted master problem with a feasible solution
    for i in range(m):
        lambdas.append(master.add_var(obj=1, name='lambda_%d' %
                                      (len(lambdas) + 1)))

    # creating constraints
    for i in range(m):
        constraints.append(master.add_constr(lambdas[i] >= b[i], 
                                             name='i_%d' % (i + 1)))

    # creating the pricing problem
    pricing = Model(SOLVER)

    # creating pricing variables
    a = []
    for i in range(m):
        a.append(pricing.add_var(obj=0, var_type=INTEGER, name='a_%d' % (i + 1)))

    # creating pricing constraint
    pricing.add_constr(xsum(w[i] * a[i] for i in range(m)) <= L, 'bar_length')

    pricing.write('pricing.lp')

    new_vars = True
    while new_vars:

        ##########
        # STEP 1: solving restricted master problem
        ##########

        master.optimize()

        # printing dual values
        print_solution(master)
        print('pi = ', end='')
        print([constraints[i].pi for i in range(m)])
        print('')

        ##########
        # STEP 2: updating pricing objective with dual values from master
        ##########

        pricing.objective = 1
        for i in range(m):
            a[i].obj = -constraints[i].pi

        # solving pricing problem
        pricing.optimize()

        # printing pricing solution
        z_val = pricing.objective_value
        print('Pricing:')
        print('    z =  {z_val}'.format(**locals()))
        print('    a = ', end='')
        print([v.x for v in pricing.vars])
        print('')

        ##########
        # STEP 3: adding the new columns
        ##########

        # checking if columns with negative reduced cost were produced and
        # adding them into the restricted master problem
        if 1 + pricing.objective_value < - EPS:
            coeffs = [a[i].x for i in range(m)]
            column = Column(constraints, coeffs)
            lambdas.append(master.add_var(obj=1, column=column, name='lambda_%d' % (len(lambdas) + 1)))

            print('new pattern = {coeffs}'.format(**locals()))

        # if no column with negative reduced cost was produced, then linear
        # relaxation of the restricted master problem is solved
        else:
            new_vars = False

        pricing.write('pricing.lp')

    print_solution(master)
Exemple #5
0
class UnitCommitment:
    def __init__(self, generators, demand):

        self.generators = generators
        self.demand = demand

        self.period = range(1, len(self.demand) + 1)

        self.model = Model(name='UnitCommitment')
        self.p, self.u = {}, {}

    def build_model(self, fixed=False, u_fixed=None):

        for t in self.period:
            for g in self.generators.index:
                if fixed:
                    self.u[t, g] = self.model.add_var(lb=u_fixed[t, g],
                                                      ub=u_fixed[t, g])
                else:
                    self.u[t, g] = self.model.add_var(var_type=BINARY)
                self.p[t, g] = self.model.add_var()

        # Max/min power
        for t in self.period:
            for g in self.generators.index:
                self.model.add_constr(
                    self.p[t, g] <=
                    self.generators.loc[g, 'p_max'] * self.u[t, g],
                    name=f'pmax_constr[{t},{g}]')
                self.model.add_constr(
                    self.p[t, g] >=
                    self.generators.loc[g, 'p_min'] * self.u[t, g],
                    name=f'pmin_constr[{t},{g}]')

        # Power balance
        for t in self.period:
            self.model.add_constr(xsum(
                self.p[t, g]
                for g in self.generators.index) == self.demand.loc[t,
                                                                   'demand'],
                                  name=f'power_bal_constr[{t}]')

        # Min on
        for t in self.period[1:]:
            for g in self.generators.index:
                min_on_time = min(t + self.generators.loc[g, 'min_on'] - 1,
                                  len(self.period))
                for tau in range(t, min_on_time + 1):
                    self.model.add_constr(
                        self.u[tau, g] >= self.u[t, g] - self.u[t - 1, g],
                        name=f'min_on_constr[{t},{g}]')

        # Min off
        for t in self.period[1:]:
            for g in self.generators.index:
                min_off_time = min(t + self.generators.loc[g, 'min_off'] - 1,
                                   len(self.period))
                for tau in range(t, min_off_time + 1):
                    self.model.add_constr(
                        1 - self.u[tau, g] >= self.u[t - 1, g] - self.u[t, g],
                        name=f'min_off_constr[{t},{g}]')

        # Objective function
        self.model.objective = minimize(
            xsum(
                xsum(self.p[t, g] * self.generators.loc[g, 'c_var'] +
                     self.u[t, g] * self.generators.loc[g, 'c_fix']
                     for g in self.generators.index) for t in self.period))

    def optimize(self):

        self.model.optimize()

        return self.u, self.p, self.model.objective.x, self.model.status.name

    def get_prices(self):

        u_fixed = {(t, g): self.u[t, g].x
                   for g in self.generators.index for t in self.period}
        self.model.clear()
        self.build_model(fixed=True, u_fixed=u_fixed)
        self.optimize()

        return [
            self.model.constr_by_name(f'power_bal_constr[{t}]').pi
            for t in self.period
        ]