Exemple #1
0
# constraint : leave each city coming from another city
for i in N:
    model += xsum(x[a] for a in IN[i]) == 1

# no subtours of size 2
for a in A:
    if (a[1], a[0]) in A.keys():
        model += x[a] + x[a[1], a[0]] <= 1

# computing farthest point for each point
F = []
G = nx.DiGraph()
for ((i, j), d) in A.items():
    G.add_edge(i, j, weight=d)
for i in N:
    P, D = nx.dijkstra_predecessor_and_distance(G, source=i)
    DS = list(D.items())
    DS.sort(key=lambda x: x[1])
    F.append((i, DS[-1][0]))

model.cuts_generator = SubTourCutGenerator(F)
model.lazy_constrs_generator = SubTourCutGenerator(F)
model.optimize()

print(model.status)

print('best route found has length {}'.format(model.objective_value))

arcs = [a for a in A.keys() if x[a].x >= 0.99]
print('optimal route : {}'.format(arcs))
Exemple #2
0
def test_tsp_cuts(solver: str):
    """tsp related tests"""
    announce_test("TSP - Branch & Cut", solver)
    N = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
    n = len(N)
    i0 = N[0]

    A = {
        ('a', 'd'): 56,
        ('d', 'a'): 67,
        ('a', 'b'): 49,
        ('b', 'a'): 50,
        ('d', 'b'): 39,
        ('b', 'd'): 37,
        ('c', 'f'): 35,
        ('f', 'c'): 35,
        ('g', 'b'): 35,
        ('b', 'g'): 25,
        ('a', 'c'): 80,
        ('c', 'a'): 99,
        ('e', 'f'): 20,
        ('f', 'e'): 20,
        ('g', 'e'): 38,
        ('e', 'g'): 49,
        ('g', 'f'): 37,
        ('f', 'g'): 32,
        ('b', 'e'): 21,
        ('e', 'b'): 30,
        ('a', 'g'): 47,
        ('g', 'a'): 68,
        ('d', 'c'): 37,
        ('c', 'd'): 52,
        ('d', 'e'): 15,
        ('e', 'd'): 20
    }

    # input and output arcs per node
    Aout = {n: [a for a in A if a[0] == n] for n in N}
    Ain = {n: [a for a in A if a[1] == n] for n in N}
    m = Model(solver_name=solver)
    m.verbose = 0

    x = {
        a: m.add_var(name='x({},{})'.format(a[0], a[1]), var_type=BINARY)
        for a in A
    }

    m.objective = xsum(c * x[a] for a, c in A.items())

    for i in N:
        m += xsum(x[a] for a in Aout[i]) == 1, 'out({})'.format(i)
        m += xsum(x[a] for a in Ain[i]) == 1, 'in({})'.format(i)

    # continuous variable to prevent subtours: each
    # city will have a different "identifier" in the planned route
    y = {i: m.add_var(name='y({})'.format(i), lb=0.0) for i in N}

    # subtour elimination
    for (i, j) in A:
        if i0 not in [i, j]:
            m.add_constr(y[i] - (n + 1) * x[(i, j)] >= y[j] - n)

    m.cuts_generator = SubTourCutGenerator()

    # tiny model, should be enough to find the optimal
    m.max_seconds = 10
    m.max_nodes = 100
    m.max_solutions = 1000

    m.optimize()

    check_result("mip model status", m.status == OptimizationStatus.OPTIMAL)
    check_result("mip model objective",
                 (abs(m.objective_value - 262)) <= 0.0001)
    print('')
Exemple #3
0
            if cut.violation > 0.001:
                model.add_cut(cut)


# number of queens
n = 60

queens = Model('queens', MAXIMIZE)

x = [[
    queens.add_var('x({},{})'.format(i, j), var_type=BINARY) for j in range(n)
] for i in range(n)]

# one per row
for i in range(n):
    queens += xsum(x[i][j] for j in range(n)) == 1, 'row({})'.format(i)

# one per column
for j in range(n):
    queens += xsum(x[i][j] for i in range(n)) == 1, 'col({})'.format(j)

queens.cuts_generator = DiagonalCutGenerator()
queens.cuts_generator.lazy_constraints = True
queens.optimize()

stdout.write('\n')
for i, v in enumerate(queens.vars):
    stdout.write('O ' if v.x >= 0.99 else '. ')
    if i % n == n - 1:
        stdout.write('\n')