Exemple #1
0
def test_vortex_init(ctx_factory):
    """
    Simple test to check that Vortex2D initializer
    creates the expected solution field.
    """
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)
    dim = 2
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )],
                                      b=[(10.0, ), (5.0, )],
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    logger.info(f"Number of elements: {mesh.nelements}")

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())

    # Init soln with Vortex
    vortex = Vortex2D()
    cv = vortex(nodes)
    gamma = 1.4
    p = 0.4 * (cv.energy - 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass)
    exp_p = cv.mass**gamma
    errmax = discr.norm(p - exp_p, np.inf)

    logger.info(f"vortex_soln = {cv}")
    logger.info(f"pressure = {p}")

    assert errmax < 1e-15
Exemple #2
0
def test_isentropic_vortex(actx_factory, order):
    """Advance the 2D isentropic vortex case in time with non-zero velocities
    using an RK4 timestepping scheme. Check the advanced field values against
    the exact/analytic expressions.

    This tests all parts of the Euler module working together, with results
    converging at the expected rates vs. the order.
    """
    actx = actx_factory()

    dim = 2

    from pytools.convergence import EOCRecorder

    eoc_rec = EOCRecorder()

    for nel_1d in [16, 32, 64]:
        from meshmode.mesh.generation import (
            generate_regular_rect_mesh, )

        mesh = generate_regular_rect_mesh(a=(-5.0, ) * dim,
                                          b=(5.0, ) * dim,
                                          nelements_per_axis=(nel_1d, ) * dim)

        exittol = 1.0
        t_final = 0.001
        cfl = 1.0
        vel = np.zeros(shape=(dim, ))
        orig = np.zeros(shape=(dim, ))
        vel[:dim] = 1.0
        dt = .0001
        initializer = Vortex2D(center=orig, velocity=vel)
        casename = "Vortex"
        boundaries = {BTAG_ALL: PrescribedBoundary(initializer)}
        eos = IdealSingleGas()
        t = 0
        flowparams = {
            "dim": dim,
            "dt": dt,
            "order": order,
            "time": t,
            "boundaries": boundaries,
            "initializer": initializer,
            "eos": eos,
            "casename": casename,
            "mesh": mesh,
            "tfinal": t_final,
            "exittol": exittol,
            "cfl": cfl,
            "constantcfl": False,
            "nstatus": 0
        }
        maxerr = _euler_flow_stepper(actx, flowparams)
        eoc_rec.add_data_point(1.0 / nel_1d, maxerr)

    logger.info(f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}")

    assert (eoc_rec.order_estimate() >= order - 0.5
            or eoc_rec.max_error() < 1e-11)
Exemple #3
0
def test_idealsingle_vortex(ctx_factory):
    r"""Test EOS with isentropic vortex.

    Tests that the IdealSingleGas EOS returns the correct pressure (p) for the
    Vortex2D solution field (i.e. $p = \rho^{\gamma}$).
    """
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    dim = 2
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )],
                                      b=[(10.0, ), (5.0, )],
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    logger.info(f"Number of elements {mesh.nelements}")

    discr = EagerDGDiscretization(actx, mesh, order=order)
    from meshmode.dof_array import thaw
    nodes = thaw(actx, discr.nodes())
    eos = IdealSingleGas()
    # Init soln with Vortex
    vortex = Vortex2D()
    cv = vortex(nodes)

    def inf_norm(x):
        return actx.to_numpy(discr.norm(x, np.inf))

    gamma = eos.gamma()
    p = eos.pressure(cv)
    exp_p = cv.mass**gamma
    errmax = inf_norm(p - exp_p)

    exp_ke = 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass
    ke = eos.kinetic_energy(cv)
    kerr = inf_norm(ke - exp_ke)

    te = eos.total_energy(cv, p)
    terr = inf_norm(te - cv.energy)

    logger.info(f"vortex_soln = {cv}")
    logger.info(f"pressure = {p}")

    assert errmax < 1e-15
    assert kerr < 1e-15
    assert terr < 1e-15
Exemple #4
0
def test_vortex_rhs(actx_factory, order):
    """Tests the inviscid rhs using the non-trivial
    2D isentropic vortex case configured to yield
    rhs = 0. Checks several different orders
    and refinement levels to check error
    behavior.
    """
    actx = actx_factory()

    dim = 2

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    from meshmode.mesh.generation import generate_regular_rect_mesh

    for nel_1d in [16, 32, 64]:

        mesh = generate_regular_rect_mesh(
            a=(-5, ) * dim,
            b=(5, ) * dim,
            n=(nel_1d, ) * dim,
        )

        logger.info(f"Number of {dim}d elements:  {mesh.nelements}")

        discr = EagerDGDiscretization(actx, mesh, order=order)
        nodes = thaw(actx, discr.nodes())

        # Init soln with Vortex and expected RHS = 0
        vortex = Vortex2D(center=[0, 0], velocity=[0, 0])
        vortex_soln = vortex(0, nodes)
        boundaries = {BTAG_ALL: PrescribedBoundary(vortex)}

        inviscid_rhs = inviscid_operator(discr,
                                         eos=IdealSingleGas(),
                                         boundaries=boundaries,
                                         q=vortex_soln,
                                         t=0.0)

        err_max = discr.norm(inviscid_rhs, np.inf)
        eoc_rec.add_data_point(1.0 / nel_1d, err_max)

    message = (f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}")
    logger.info(message)

    assert (eoc_rec.order_estimate() >= order - 0.5
            or eoc_rec.max_error() < 1e-11)
Exemple #5
0
def test_analytic_comparison(actx_factory):
    """Quick test of state comparison routine."""
    from mirgecom.initializers import Vortex2D
    from mirgecom.simutil import compare_fluid_solutions, componentwise_norms

    actx = actx_factory()
    nel_1d = 4
    dim = 2

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 2
    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(discr.nodes(), actx)
    zeros = discr.zeros(actx)
    ones = zeros + 1.0
    mass = ones
    energy = ones
    velocity = 2 * nodes
    mom = mass * velocity
    vortex_init = Vortex2D()
    vortex_soln = vortex_init(x_vec=nodes, eos=IdealSingleGas())

    cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
    resid = vortex_soln - cv

    expected_errors = actx.to_numpy(
        flatten(componentwise_norms(discr, resid, order=np.inf),
                actx)).tolist()

    errors = compare_fluid_solutions(discr, cv, cv)
    assert max(errors) == 0

    errors = compare_fluid_solutions(discr, cv, vortex_soln)
    assert errors == expected_errors
Exemple #6
0
def test_idealsingle_vortex(ctx_factory):
    r"""
    Tests that the IdealSingleGas EOS returns
    the correct pressure (p) for the Vortex2D solution
    field (i.e. :math:'p = \rho^{\gamma}').
    """
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    dim = 2
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )],
                                      b=[(10.0, ), (5.0, )],
                                      n=(nel_1d, ) * dim)

    order = 3
    logger.info(f"Number of elements {mesh.nelements}")

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    eos = IdealSingleGas()
    # Init soln with Vortex
    vortex = Vortex2D()
    vortex_soln = vortex(0, nodes)
    cv = split_conserved(dim, vortex_soln)
    gamma = eos.gamma()
    p = eos.pressure(cv)
    exp_p = cv.mass**gamma
    errmax = discr.norm(p - exp_p, np.inf)

    logger.info(f"vortex_soln = {vortex_soln}")
    logger.info(f"pressure = {p}")

    assert errmax < 1e-15
Exemple #7
0
def main(ctx_factory=cl.create_some_context,
         use_logmgr=True,
         use_leap=False,
         use_profiling=False,
         casename=None,
         rst_filename=None,
         actx_class=PyOpenCLArrayContext):
    """Drive the example."""
    cl_ctx = ctx_factory()

    if casename is None:
        casename = "mirgecom"

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from mirgecom.simutil import global_reduce as _global_reduce
    global_reduce = partial(_global_reduce, comm=comm)

    logmgr = initialize_logmgr(use_logmgr,
                               filename=f"{casename}.sqlite",
                               mode="wu",
                               mpi_comm=comm)

    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
    else:
        queue = cl.CommandQueue(cl_ctx)

    actx = actx_class(queue,
                      allocator=cl_tools.MemoryPool(
                          cl_tools.ImmediateAllocator(queue)))

    # timestepping control
    current_step = 0
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step
    t_final = 0.01
    current_cfl = 1.0
    current_dt = .001
    current_t = 0
    constant_cfl = False

    # some i/o frequencies
    nrestart = 10
    nstatus = 1
    nviz = 10
    nhealth = 10

    dim = 2
    if dim != 2:
        raise ValueError("This example must be run with dim = 2.")

    rst_path = "restart_data/"
    rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl")
    if rst_filename:  # read the grid from restart data
        rst_filename = f"{rst_filename}-{rank:04d}.pkl"
        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(actx, rst_filename)
        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]
        assert restart_data["num_parts"] == num_parts
    else:  # generate the grid from scratch
        nel_1d = 16
        box_ll = -5.0
        box_ur = 5.0
        from meshmode.mesh.generation import generate_regular_rect_mesh
        generate_mesh = partial(generate_regular_rect_mesh,
                                a=(box_ll, ) * dim,
                                b=(box_ur, ) * dim,
                                nelements_per_axis=(nel_1d, ) * dim)
        local_mesh, global_nelements = generate_and_distribute_mesh(
            comm, generate_mesh)
        local_nelements = local_mesh.nelements

    order = 3
    discr = EagerDGDiscretization(actx,
                                  local_mesh,
                                  order=order,
                                  mpi_communicator=comm)
    nodes = thaw(discr.nodes(), actx)

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)
        logmgr_add_many_discretization_quantities(logmgr, discr, dim,
                                                  extract_vars_for_logging,
                                                  units_for_logging)

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        logmgr.add_watches([
            ("step.max", "step = {value}, "),
            ("t_sim.max", "sim time: {value:1.6e} s\n"),
            ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "),
            ("max_pressure", "{value:1.9e})\n"),
            ("t_step.max", "------- step walltime: {value:6g} s, "),
            ("t_log.max", "log walltime: {value:6g} s")
        ])

        try:
            logmgr.add_watches(
                ["memory_usage_python.max", "memory_usage_gpu.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["multiply_time.max"])

    # soln setup and init
    eos = IdealSingleGas()
    vel = np.zeros(shape=(dim, ))
    orig = np.zeros(shape=(dim, ))
    vel[:dim] = 1.0
    initializer = Vortex2D(center=orig, velocity=vel)
    gas_model = GasModel(eos=eos)

    def boundary_solution(discr, btag, gas_model, state_minus, **kwargs):
        actx = state_minus.array_context
        bnd_discr = discr.discr_from_dd(btag)
        nodes = thaw(bnd_discr.nodes(), actx)
        return make_fluid_state(
            initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model)

    boundaries = {
        BTAG_ALL:
        PrescribedFluidBoundary(boundary_state_func=boundary_solution)
    }

    if rst_filename:
        current_t = restart_data["t"]
        current_step = restart_data["step"]
        current_cv = restart_data["cv"]
        if logmgr:
            from mirgecom.logging_quantities import logmgr_set_time
            logmgr_set_time(logmgr, current_step, current_t)
    else:
        # Set the current state from time 0
        current_cv = initializer(nodes)

    current_state = make_fluid_state(current_cv, gas_model)

    visualizer = make_visualizer(discr)

    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)
    if rank == 0:
        logger.info(init_message)

    def my_write_status(state, component_errors, cfl=None):
        if cfl is None:
            if constant_cfl:
                cfl = current_cfl
            else:
                from grudge.op import nodal_max
                from mirgecom.inviscid import get_inviscid_cfl
                cfl = actx.to_numpy(
                    nodal_max(discr, "vol",
                              get_inviscid_cfl(discr, state, current_dt)))[()]
        if rank == 0:
            logger.info(f"------ {cfl=}\n"
                        "------- errors=" +
                        ", ".join("%.3g" % en for en in component_errors))

    def my_write_viz(step, t, state, dv=None, exact=None, resid=None):
        if exact is None:
            exact = initializer(x_vec=nodes, eos=eos, time=t)
        if resid is None:
            resid = state - exact
        viz_fields = [("cv", state), ("dv", dv), ("exact", exact),
                      ("residual", resid)]
        from mirgecom.simutil import write_visfile
        write_visfile(discr,
                      viz_fields,
                      visualizer,
                      vizname=casename,
                      step=step,
                      t=t,
                      overwrite=True,
                      vis_timer=vis_timer)

    def my_write_restart(step, t, state):
        rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank)
        if rst_fname != rst_filename:
            rst_data = {
                "local_mesh": local_mesh,
                "cv": state,
                "t": t,
                "step": step,
                "order": order,
                "global_nelements": global_nelements,
                "num_parts": num_parts
            }
            from mirgecom.restart import write_restart_file
            write_restart_file(actx, rst_data, rst_fname, comm)

    def my_health_check(pressure, component_errors):
        health_error = False
        from mirgecom.simutil import check_naninf_local, check_range_local
        if check_naninf_local(discr, "vol", pressure) \
           or check_range_local(discr, "vol", pressure, .2, 1.02):
            health_error = True
            logger.info(f"{rank=}: Invalid pressure data found.")

        exittol = .1
        if max(component_errors) > exittol:
            health_error = True
            if rank == 0:
                logger.info("Solution diverged from exact soln.")

        return health_error

    def my_pre_step(step, t, dt, state):
        fluid_state = make_fluid_state(state, gas_model)
        cv = fluid_state.cv
        dv = fluid_state.dv

        try:
            exact = None
            component_errors = None

            if logmgr:
                logmgr.tick_before()

            do_viz = check_step(step=step, interval=nviz)
            do_restart = check_step(step=step, interval=nrestart)
            do_health = check_step(step=step, interval=nhealth)
            do_status = check_step(step=step, interval=nstatus)

            if do_health:
                exact = initializer(x_vec=nodes, eos=eos, time=t)
                from mirgecom.simutil import compare_fluid_solutions
                component_errors = compare_fluid_solutions(discr, cv, exact)
                health_errors = global_reduce(my_health_check(
                    dv.pressure, component_errors),
                                              op="lor")
                if health_errors:
                    if rank == 0:
                        logger.info("Fluid solution failed health check.")
                    raise MyRuntimeError("Failed simulation health check.")

            if do_restart:
                my_write_restart(step=step, t=t, state=cv)

            if do_status:
                if component_errors is None:
                    if exact is None:
                        exact = initializer(x_vec=nodes, eos=eos, time=t)
                    from mirgecom.simutil import compare_fluid_solutions
                    component_errors = compare_fluid_solutions(
                        discr, cv, exact)
                my_write_status(fluid_state, component_errors)

            if do_viz:
                if exact is None:
                    exact = initializer(x_vec=nodes, eos=eos, time=t)
                resid = state - exact
                my_write_viz(step=step,
                             t=t,
                             state=cv,
                             dv=dv,
                             exact=exact,
                             resid=resid)

        except MyRuntimeError:
            if rank == 0:
                logger.info("Errors detected; attempting graceful exit.")
            my_write_viz(step=step, t=t, state=cv)
            my_write_restart(step=step, t=t, state=cv)
            raise

        dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final,
                              constant_cfl)
        return state, dt

    def my_post_step(step, t, dt, state):
        # Logmgr needs to know about EOS, dt, dim?
        # imo this is a design/scope flaw
        if logmgr:
            set_dt(logmgr, dt)
            set_sim_state(logmgr, dim, state, eos)
            logmgr.tick_after()
        return state, dt

    def my_rhs(t, state):
        fluid_state = make_fluid_state(state, gas_model)
        return euler_operator(discr,
                              state=fluid_state,
                              time=t,
                              boundaries=boundaries,
                              gas_model=gas_model)

    current_dt = get_sim_timestep(discr, current_state, current_t, current_dt,
                                  current_cfl, t_final, constant_cfl)

    current_step, current_t, current_cv = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      pre_step_callback=my_pre_step,
                      post_step_callback=my_post_step, dt=current_dt,
                      state=current_state.cv, t=current_t, t_final=t_final)

    # Dump the final data
    if rank == 0:
        logger.info("Checkpointing final state ...")

    current_state = make_fluid_state(current_cv, gas_model)
    final_dv = current_state.dv
    final_exact = initializer(x_vec=nodes, eos=eos, time=current_t)
    final_resid = current_state.cv - final_exact
    my_write_viz(step=current_step,
                 t=current_t,
                 state=current_state.cv,
                 dv=final_dv,
                 exact=final_exact,
                 resid=final_resid)
    my_write_restart(step=current_step, t=current_t, state=current_state.cv)

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())

    finish_tol = 1e-16
    assert np.abs(current_t - t_final) < finish_tol
Exemple #8
0
def main(ctx_factory=cl.create_some_context,
         use_profiling=False,
         use_logmgr=False,
         use_leap=False):
    """Drive the example."""
    from mpi4py import MPI
    comm = MPI.COMM_WORLD

    logmgr = initialize_logmgr(use_logmgr,
                               filename="vortex.sqlite",
                               mode="wu",
                               mpi_comm=comm)

    cl_ctx = ctx_factory()
    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
        actx = PyOpenCLProfilingArrayContext(
            queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            logmgr=logmgr)
    else:
        queue = cl.CommandQueue(cl_ctx)
        actx = PyOpenCLArrayContext(queue,
                                    allocator=cl_tools.MemoryPool(
                                        cl_tools.ImmediateAllocator(queue)))

    dim = 2
    nel_1d = 16
    order = 3
    exittol = .1
    t_final = 0.1
    current_cfl = 1.0
    vel = np.zeros(shape=(dim, ))
    orig = np.zeros(shape=(dim, ))
    vel[:dim] = 1.0
    current_dt = .001
    current_t = 0
    eos = IdealSingleGas()
    initializer = Vortex2D(center=orig, velocity=vel)
    casename = "vortex"
    boundaries = {BTAG_ALL: PrescribedBoundary(initializer)}
    constant_cfl = False
    nstatus = 10
    nviz = 10
    rank = 0
    checkpoint_t = current_t
    current_step = 0
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step
    box_ll = -5.0
    box_ur = 5.0

    rank = comm.Get_rank()

    if dim != 2:
        raise ValueError("This example must be run with dim = 2.")

    from meshmode.mesh.generation import generate_regular_rect_mesh
    generate_mesh = partial(generate_regular_rect_mesh,
                            a=(box_ll, ) * dim,
                            b=(box_ur, ) * dim,
                            nelements_per_axis=(nel_1d, ) * dim)
    local_mesh, global_nelements = generate_and_distribute_mesh(
        comm, generate_mesh)
    local_nelements = local_mesh.nelements

    discr = EagerDGDiscretization(actx,
                                  local_mesh,
                                  order=order,
                                  mpi_communicator=comm)
    nodes = thaw(actx, discr.nodes())
    current_state = initializer(nodes)

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)
        logmgr_add_many_discretization_quantities(logmgr, discr, dim,
                                                  extract_vars_for_logging,
                                                  units_for_logging)

        logmgr.add_watches([
            "step.max", "t_step.max", "t_log.max", "min_temperature",
            "L2_norm_momentum1"
        ])

        try:
            logmgr.add_watches(
                ["memory_usage_python.max", "memory_usage_gpu.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["multiply_time.max"])

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

    visualizer = make_visualizer(discr)

    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)
    if rank == 0:
        logger.info(init_message)

    get_timestep = partial(inviscid_sim_timestep,
                           discr=discr,
                           t=current_t,
                           dt=current_dt,
                           cfl=current_cfl,
                           eos=eos,
                           t_final=t_final,
                           constant_cfl=constant_cfl)

    def my_rhs(t, state):
        return euler_operator(discr,
                              cv=state,
                              t=t,
                              boundaries=boundaries,
                              eos=eos)

    def my_checkpoint(step, t, dt, state):
        return sim_checkpoint(discr,
                              visualizer,
                              eos,
                              cv=state,
                              exact_soln=initializer,
                              vizname=casename,
                              step=step,
                              t=t,
                              dt=dt,
                              nstatus=nstatus,
                              nviz=nviz,
                              exittol=exittol,
                              constant_cfl=constant_cfl,
                              comm=comm,
                              vis_timer=vis_timer)

    try:
        (current_step, current_t, current_state) = \
            advance_state(rhs=my_rhs, timestepper=timestepper,
                checkpoint=my_checkpoint,
                get_timestep=get_timestep, state=current_state,
                t=current_t, t_final=t_final, logmgr=logmgr,
                eos=eos, dim=dim)
    except ExactSolutionMismatch as ex:
        current_step = ex.step
        current_t = ex.t
        current_state = ex.state

    #    if current_t != checkpoint_t:
    if rank == 0:
        logger.info("Checkpointing final state ...")
    my_checkpoint(current_step,
                  t=current_t,
                  dt=(current_t - checkpoint_t),
                  state=current_state)

    if current_t - t_final < 0:
        raise ValueError("Simulation exited abnormally")

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())
Exemple #9
0
def test_vortex_rhs(actx_factory, order, use_overintegration):
    """Test the inviscid rhs using the non-trivial 2D isentropic vortex.

    The case is configured to yield rhs = 0. Checks several different orders
    and refinement levels to check error behavior.
    """
    actx = actx_factory()

    dim = 2

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    from meshmode.mesh.generation import generate_regular_rect_mesh

    for nel_1d in [32, 48, 64]:

        mesh = generate_regular_rect_mesh(
            a=(-5,) * dim, b=(5,) * dim, nelements_per_axis=(nel_1d,) * dim,
        )

        logger.info(
            f"Number of {dim}d elements:  {mesh.nelements}"
        )

        from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
        from meshmode.discretization.poly_element import \
            default_simplex_group_factory, QuadratureSimplexGroupFactory

        discr = EagerDGDiscretization(
            actx, mesh,
            discr_tag_to_group_factory={
                DISCR_TAG_BASE: default_simplex_group_factory(
                    base_dim=dim, order=order),
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
            }
        )

        if use_overintegration:
            quadrature_tag = DISCR_TAG_QUAD
        else:
            quadrature_tag = None

        nodes = thaw(discr.nodes(), actx)

        # Init soln with Vortex and expected RHS = 0
        vortex = Vortex2D(center=[0, 0], velocity=[0, 0])
        vortex_soln = vortex(nodes)
        gas_model = GasModel(eos=IdealSingleGas())
        fluid_state = make_fluid_state(vortex_soln, gas_model)

        def _vortex_boundary(discr, btag, gas_model, state_minus, **kwargs):
            actx = state_minus.array_context
            bnd_discr = discr.discr_from_dd(btag)
            nodes = thaw(bnd_discr.nodes(), actx)
            return make_fluid_state(vortex(x_vec=nodes, **kwargs), gas_model)

        boundaries = {
            BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_vortex_boundary)
        }

        inviscid_rhs = euler_operator(
            discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries,
            time=0.0, quadrature_tag=quadrature_tag)

        err_max = max_component_norm(discr, inviscid_rhs, np.inf)

        eoc_rec.add_data_point(1.0 / nel_1d, err_max)

    logger.info(
        f"Error for (dim,order) = ({dim},{order}):\n"
        f"{eoc_rec}"
    )

    assert (
        eoc_rec.order_estimate() >= order - 0.5
        or eoc_rec.max_error() < 1e-11
    )
Exemple #10
0
def main(ctx_factory=cl.create_some_context):

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue,
                                allocator=cl_tools.MemoryPool(
                                    cl_tools.ImmediateAllocator(queue)))

    dim = 2
    nel_1d = 16
    order = 3
    exittol = .09
    t_final = 0.1
    current_cfl = 1.0
    vel = np.zeros(shape=(dim, ))
    orig = np.zeros(shape=(dim, ))
    vel[:dim] = 1.0
    current_dt = .001
    current_t = 0
    eos = IdealSingleGas()
    initializer = Vortex2D(center=orig, velocity=vel)
    casename = "vortex"
    boundaries = {BTAG_ALL: PrescribedBoundary(initializer)}
    constant_cfl = False
    nstatus = 10
    nviz = 10
    rank = 0
    checkpoint_t = current_t
    current_step = 0
    timestepper = rk4_step
    box_ll = -5.0
    box_ur = 5.0

    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()

    from meshmode.mesh.generation import generate_regular_rect_mesh
    generate_grid = partial(generate_regular_rect_mesh,
                            a=(box_ll, ) * dim,
                            b=(box_ur, ) * dim,
                            n=(nel_1d, ) * dim)
    local_mesh, global_nelements = create_parallel_grid(comm, generate_grid)
    local_nelements = local_mesh.nelements

    discr = EagerDGDiscretization(actx,
                                  local_mesh,
                                  order=order,
                                  mpi_communicator=comm)
    nodes = thaw(actx, discr.nodes())
    current_state = initializer(0, nodes)

    visualizer = make_visualizer(
        discr, discr.order + 3 if discr.dim == 2 else discr.order)
    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)
    if rank == 0:
        logger.info(init_message)

    get_timestep = partial(inviscid_sim_timestep,
                           discr=discr,
                           t=current_t,
                           dt=current_dt,
                           cfl=current_cfl,
                           eos=eos,
                           t_final=t_final,
                           constant_cfl=constant_cfl)

    def my_rhs(t, state):
        return inviscid_operator(discr,
                                 q=state,
                                 t=t,
                                 boundaries=boundaries,
                                 eos=eos)

    def my_checkpoint(step, t, dt, state):
        return sim_checkpoint(discr,
                              visualizer,
                              eos,
                              q=state,
                              exact_soln=initializer,
                              vizname=casename,
                              step=step,
                              t=t,
                              dt=dt,
                              nstatus=nstatus,
                              nviz=nviz,
                              exittol=exittol,
                              constant_cfl=constant_cfl,
                              comm=comm)

    try:
        (current_step, current_t, current_state) = \
            advance_state(rhs=my_rhs, timestepper=timestepper,
                          checkpoint=my_checkpoint,
                          get_timestep=get_timestep, state=current_state,
                          t=current_t, t_final=t_final)
    except ExactSolutionMismatch as ex:
        current_step = ex.step
        current_t = ex.t
        current_state = ex.state

    #    if current_t != checkpoint_t:
    if rank == 0:
        logger.info("Checkpointing final state ...")
        my_checkpoint(current_step,
                      t=current_t,
                      dt=(current_t - checkpoint_t),
                      state=current_state)

    if current_t - t_final < 0:
        raise ValueError("Simulation exited abnormally")