def test_vortex_init(ctx_factory): """ Simple test to check that Vortex2D initializer creates the expected solution field. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )], b=[(10.0, ), (5.0, )], nelements_per_axis=(nel_1d, ) * dim) order = 3 logger.info(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # Init soln with Vortex vortex = Vortex2D() cv = vortex(nodes) gamma = 1.4 p = 0.4 * (cv.energy - 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass) exp_p = cv.mass**gamma errmax = discr.norm(p - exp_p, np.inf) logger.info(f"vortex_soln = {cv}") logger.info(f"pressure = {p}") assert errmax < 1e-15
def test_isentropic_vortex(actx_factory, order): """Advance the 2D isentropic vortex case in time with non-zero velocities using an RK4 timestepping scheme. Check the advanced field values against the exact/analytic expressions. This tests all parts of the Euler module working together, with results converging at the expected rates vs. the order. """ actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for nel_1d in [16, 32, 64]: from meshmode.mesh.generation import ( generate_regular_rect_mesh, ) mesh = generate_regular_rect_mesh(a=(-5.0, ) * dim, b=(5.0, ) * dim, nelements_per_axis=(nel_1d, ) * dim) exittol = 1.0 t_final = 0.001 cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 dt = .0001 initializer = Vortex2D(center=orig, velocity=vel) casename = "Vortex" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} eos = IdealSingleGas() t = 0 flowparams = { "dim": dim, "dt": dt, "order": order, "time": t, "boundaries": boundaries, "initializer": initializer, "eos": eos, "casename": casename, "mesh": mesh, "tfinal": t_final, "exittol": exittol, "cfl": cfl, "constantcfl": False, "nstatus": 0 } maxerr = _euler_flow_stepper(actx, flowparams) eoc_rec.add_data_point(1.0 / nel_1d, maxerr) logger.info(f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}") assert (eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11)
def test_idealsingle_vortex(ctx_factory): r"""Test EOS with isentropic vortex. Tests that the IdealSingleGas EOS returns the correct pressure (p) for the Vortex2D solution field (i.e. $p = \rho^{\gamma}$). """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )], b=[(10.0, ), (5.0, )], nelements_per_axis=(nel_1d, ) * dim) order = 3 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) from meshmode.dof_array import thaw nodes = thaw(actx, discr.nodes()) eos = IdealSingleGas() # Init soln with Vortex vortex = Vortex2D() cv = vortex(nodes) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) gamma = eos.gamma() p = eos.pressure(cv) exp_p = cv.mass**gamma errmax = inf_norm(p - exp_p) exp_ke = 0.5 * np.dot(cv.momentum, cv.momentum) / cv.mass ke = eos.kinetic_energy(cv) kerr = inf_norm(ke - exp_ke) te = eos.total_energy(cv, p) terr = inf_norm(te - cv.energy) logger.info(f"vortex_soln = {cv}") logger.info(f"pressure = {p}") assert errmax < 1e-15 assert kerr < 1e-15 assert terr < 1e-15
def test_vortex_rhs(actx_factory, order): """Tests the inviscid rhs using the non-trivial 2D isentropic vortex case configured to yield rhs = 0. Checks several different orders and refinement levels to check error behavior. """ actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() from meshmode.mesh.generation import generate_regular_rect_mesh for nel_1d in [16, 32, 64]: mesh = generate_regular_rect_mesh( a=(-5, ) * dim, b=(5, ) * dim, n=(nel_1d, ) * dim, ) logger.info(f"Number of {dim}d elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) # Init soln with Vortex and expected RHS = 0 vortex = Vortex2D(center=[0, 0], velocity=[0, 0]) vortex_soln = vortex(0, nodes) boundaries = {BTAG_ALL: PrescribedBoundary(vortex)} inviscid_rhs = inviscid_operator(discr, eos=IdealSingleGas(), boundaries=boundaries, q=vortex_soln, t=0.0) err_max = discr.norm(inviscid_rhs, np.inf) eoc_rec.add_data_point(1.0 / nel_1d, err_max) message = (f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}") logger.info(message) assert (eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11)
def test_analytic_comparison(actx_factory): """Quick test of state comparison routine.""" from mirgecom.initializers import Vortex2D from mirgecom.simutil import compare_fluid_solutions, componentwise_norms actx = actx_factory() nel_1d = 4 dim = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(1.0, ) * dim, b=(2.0, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 2 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(discr.nodes(), actx) zeros = discr.zeros(actx) ones = zeros + 1.0 mass = ones energy = ones velocity = 2 * nodes mom = mass * velocity vortex_init = Vortex2D() vortex_soln = vortex_init(x_vec=nodes, eos=IdealSingleGas()) cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom) resid = vortex_soln - cv expected_errors = actx.to_numpy( flatten(componentwise_norms(discr, resid, order=np.inf), actx)).tolist() errors = compare_fluid_solutions(discr, cv, cv) assert max(errors) == 0 errors = compare_fluid_solutions(discr, cv, vortex_soln) assert errors == expected_errors
def test_idealsingle_vortex(ctx_factory): r""" Tests that the IdealSingleGas EOS returns the correct pressure (p) for the Vortex2D solution field (i.e. :math:'p = \rho^{\gamma}'). """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=[(0.0, ), (-5.0, )], b=[(10.0, ), (5.0, )], n=(nel_1d, ) * dim) order = 3 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) eos = IdealSingleGas() # Init soln with Vortex vortex = Vortex2D() vortex_soln = vortex(0, nodes) cv = split_conserved(dim, vortex_soln) gamma = eos.gamma() p = eos.pressure(cv) exp_p = cv.mass**gamma errmax = discr.norm(p - exp_p, np.inf) logger.info(f"vortex_soln = {vortex_soln}") logger.info(f"pressure = {p}") assert errmax < 1e-15
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive the example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() num_parts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.01 current_cfl = 1.0 current_dt = .001 current_t = 0 constant_cfl = False # some i/o frequencies nrestart = 10 nstatus = 1 nviz = 10 nhealth = 10 dim = 2 if dim != 2: raise ValueError("This example must be run with dim = 2.") rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == num_parts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) # soln setup and init eos = IdealSingleGas() vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 initializer = Vortex2D(center=orig, velocity=vel) gas_model = GasModel(eos=eos) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state( initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(nodes) current_state = make_fluid_state(current_cv, gas_model) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(state, component_errors, cfl=None): if cfl is None: if constant_cfl: cfl = current_cfl else: from grudge.op import nodal_max from mirgecom.inviscid import get_inviscid_cfl cfl = actx.to_numpy( nodal_max(discr, "vol", get_inviscid_cfl(discr, state, current_dt)))[()] if rank == 0: logger.info(f"------ {cfl=}\n" "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) def my_write_viz(step, t, state, dv=None, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv), ("exact", exact), ("residual", resid)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": num_parts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .2, 1.02): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .1 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): fluid_state = make_fluid_state(state, gas_model) cv = fluid_state.cv dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce(my_health_check( dv.pressure, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions( discr, cv, exact) my_write_status(fluid_state, component_errors) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv) my_write_restart(step=step, t=t, state=cv) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): fluid_state = make_fluid_state(state, gas_model) return euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_cv = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state.cv, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_state = make_fluid_state(current_cv, gas_model) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_state.cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_profiling=False, use_logmgr=False, use_leap=False): """Drive the example.""" from mpi4py import MPI comm = MPI.COMM_WORLD logmgr = initialize_logmgr(use_logmgr, filename="vortex.sqlite", mode="wu", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 nel_1d = 16 order = 3 exittol = .1 t_final = 0.1 current_cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 current_dt = .001 current_t = 0 eos = IdealSingleGas() initializer = Vortex2D(center=orig, velocity=vel) casename = "vortex" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} constant_cfl = False nstatus = 10 nviz = 10 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 rank = comm.Get_rank() if dim != 2: raise ValueError("This example must be run with dim = 2.") from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) current_state = initializer(nodes) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ "step.max", "t_step.max", "t_log.max", "min_temperature", "L2_norm_momentum1" ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, cv=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final, logmgr=logmgr, eos=eos, dim=dim) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally") if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data())
def test_vortex_rhs(actx_factory, order, use_overintegration): """Test the inviscid rhs using the non-trivial 2D isentropic vortex. The case is configured to yield rhs = 0. Checks several different orders and refinement levels to check error behavior. """ actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() from meshmode.mesh.generation import generate_regular_rect_mesh for nel_1d in [32, 48, 64]: mesh = generate_regular_rect_mesh( a=(-5,) * dim, b=(5,) * dim, nelements_per_axis=(nel_1d,) * dim, ) logger.info( f"Number of {dim}d elements: {mesh.nelements}" ) from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) } ) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None nodes = thaw(discr.nodes(), actx) # Init soln with Vortex and expected RHS = 0 vortex = Vortex2D(center=[0, 0], velocity=[0, 0]) vortex_soln = vortex(nodes) gas_model = GasModel(eos=IdealSingleGas()) fluid_state = make_fluid_state(vortex_soln, gas_model) def _vortex_boundary(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(vortex(x_vec=nodes, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_vortex_boundary) } inviscid_rhs = euler_operator( discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries, time=0.0, quadrature_tag=quadrature_tag) err_max = max_component_norm(discr, inviscid_rhs, np.inf) eoc_rec.add_data_point(1.0 / nel_1d, err_max) logger.info( f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}" ) assert ( eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11 )
def main(ctx_factory=cl.create_some_context): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 nel_1d = 16 order = 3 exittol = .09 t_final = 0.1 current_cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 current_dt = .001 current_t = 0 eos = IdealSingleGas() initializer = Vortex2D(center=orig, velocity=vel) casename = "vortex" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} constant_cfl = False nstatus = 10 nviz = 10 rank = 0 checkpoint_t = current_t current_step = 0 timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 comm = MPI.COMM_WORLD rank = comm.Get_rank() from meshmode.mesh.generation import generate_regular_rect_mesh generate_grid = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, n=(nel_1d, ) * dim) local_mesh, global_nelements = create_parallel_grid(comm, generate_grid) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) current_state = initializer(0, nodes) visualizer = make_visualizer( discr, discr.order + 3 if discr.dim == 2 else discr.order) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return inviscid_operator(discr, q=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, q=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally")