Exemple #1
0
 def generate(self):
     initial_learning_rate = 6
     for i in range(1, 150):
         # Process image and return variable
         self.processed_image = preprocess_image(self.created_image, False)
         # Define optimizer for the image
         optimizer = SGD([self.processed_image], lr=initial_learning_rate)
         # Forward
         output = self.model(self.processed_image)
         # Target specific class
         class_loss = -output[0, self.target_class]
         print('Iteration:', str(i), 'Loss',
               "{0:.2f}".format(class_loss.data.numpy()))
         # Zero grads
         self.model.zero_grad()
         # Backward
         class_loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(self.processed_image)
         if i % 10 == 0:
             # Save image
             im_path = '../generated/c_specific_iteration_' + str(
                 i) + '.jpg'
             save_image(self.created_image, im_path)
     return self.processed_image
Exemple #2
0
 def dream(self):
     # Process image and return variable
     self.processed_image = preprocess_image(self.created_image, True)
     # Define optimizer for the image
     # Earlier layers need higher learning rates to visualize whereas layer layers need less
     optimizer = SGD([self.processed_image], lr=12,  weight_decay=1e-4)
     for i in range(1, 251):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = self.processed_image
         for index, layer in enumerate(self.model):
             # Forward
             x = layer(x)
             # Only need to forward until we the selected layer is reached
             if index == self.selected_layer:
                 break
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(self.processed_image)
         # Save image every 20 iteration
         if i % 10 == 0:
             print(self.created_image.shape)
             im_path = '../generated/ddream_l' + str(self.selected_layer) + \
                 '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
             save_image(self.created_image, im_path)
 def visualise_layer_with_hooks(self):
     # Hook the selected layer
     self.hook_layer()
     # Generate a random image
     random_image = plt.imread("../data/valid/1/0000.jpg")
     # Process image and return variable
     processed_image = preprocess_image(random_image, False)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, 31):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image.to(device)
         x = self.model.conv1(x)
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:',
               "{0:.2f}".format(loss.data.cpu().numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(processed_image)
         # Save image
         if i == 30:
             im_path = '../generated/layer_vis_1' + \
                       '_f' + str(self.selected_filter) + '.jpg'
             save_image(self.created_image, im_path)
Exemple #4
0
    def generate_inverted_image_specific_layer(self,
                                               input_image,
                                               img_size,
                                               target_layer=3):
        # Generate a random image which we will optimize
        opt_img = Variable(1e-1 * torch.randn(1, 3, img_size, img_size),
                           requires_grad=True)
        # Define optimizer for previously created image
        optimizer = SGD([opt_img], lr=1e4, momentum=0.9)
        # Get the output from the model after a forward pass until target_layer
        # with the input image (real image, NOT the randomly generated one)
        input_image_layer_output = \
            self.get_output_from_specific_layer_average(input_image, target_layer)

        # Alpha regularization parametrs
        # Parameter alpha, which is actually sixth norm
        alpha_reg_alpha = 6
        # The multiplier, lambda alpha
        alpha_reg_lambda = 1e-7

        # Total variation regularization parameters
        # Parameter beta, which is actually second norm
        tv_reg_beta = 2
        # The multiplier, lambda beta
        tv_reg_lambda = 1e-8

        for i in range(201):
            optimizer.zero_grad()
            # Get the output from the model after a forward pass until target_layer
            # with the generated image (randomly generated one, NOT the real image)
            output = self.get_output_from_specific_layer(opt_img, target_layer)
            # Calculate euclidian loss
            euc_loss = 1e-1 * self.euclidian_loss(
                input_image_layer_output.detach(), output)
            # Calculate alpha regularization
            reg_alpha = alpha_reg_lambda * self.alpha_norm(
                opt_img, alpha_reg_alpha)
            # Calculate total variation regularization
            reg_total_variation = tv_reg_lambda * self.total_variation_norm(
                opt_img, tv_reg_beta)
            # Sum all to optimize
            loss = euc_loss + reg_alpha + reg_total_variation
            # Step
            loss.backward()
            optimizer.step()
            # Generate image every 5 iterations
            if i % 5 == 0:
                print('Iteration:', str(i), 'Loss:', loss.data.numpy())
                recreated_im = recreate_image(opt_img)
                im_path = '../generated/Inv_Image_Layer_' + str(target_layer) + \
                    '_Iteration_' + str(i) + '.jpg'
                save_image(recreated_im, im_path)

            # Reduce learning rate every 40 iterations
            if i % 40 == 0:
                for param_group in optimizer.param_groups:
                    param_group['lr'] *= 1 / 10
Exemple #5
0
 def visualise_layer_without_hooks(self):
     # Process image and return variable
     # Generate a random image
     tmp = torch.from_numpy(
         np.random.uniform(150, 180, (1, 3, 32, 112, 112))).float()
     for i in range(self.frame_num):
         if self.video is not None:
             random_image = self.video[i, ...]
         else:
             random_image = np.uint8(
                 np.random.uniform(150, 180, (112, 112, 3)))
         # Process image and return variable
         processed_image = preprocess_image(random_image, False)
         tmp[0, :, i, ...] = processed_image[0, ...]
     processed_image = Variable(tmp, requires_grad=True).to(self.device)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, self.iter_num + 1):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image
         for index, layer in enumerate(self.model):
             # Forward pass layer by layer
             x = layer(x)
             if isinstance(layer, nn.MaxPool3d):
                 x = x[0]
             if index == self.selected_layer:
                 # Only need to forward until the selected layer is reached
                 # Now, x is the output of the selected layer
                 break
         # Here, we get the specific filter from the output of the convolution operation
         # x is a tensor of shape 1x512x28x28.(For layer 17)
         # So there are 512 unique filter outputs
         # Following line selects a filter from 512 filters so self.conv_output will become
         # a tensor of shape 28x28
         self.conv_output = x[0, self.selected_filter]
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:',
               "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         # print(processed_image.size())
         if i % self.iter_num == 0:
             for j in range(self.frame_num):
                 out_img = processed_image[:, :, j,
                                           ...]  # self.selected_frame
                 self.created_image = recreate_image(out_img)
                 # Save image
                 im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                     '_f' + str(self.selected_filter) + '_frame' + str(j) + '.jpg'
                 save_image(self.created_image, im_path)
    def visualise_layer_without_hooks(self,plots_path):
        # Process image and return variable
        # Generate a random image
        random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))
        # Process image and return variable
        processed_image = preprocess_image(random_image, False)
        # Define optimizer for the image
        optimizer = Adam([processed_image], lr=0.05, weight_decay=1e-6)
        for i in range(1, 101):
            optimizer.zero_grad()
            # Assign create image to a variable to move forward in the model
            x = processed_image
            kl = 0
            for index, layer in enumerate(self.model):
                # Forward pass layer by layer
                if hasattr(layer, 'convprobforward') and callable(layer.convprobforward):
                    x, _kl, = layer.convprobforward(x)
                    kl += _kl
                # Only need to forward until the selected layer is reached
                    if index == self.selected_layer:
                        # (forward hook function triggered)
                        break
            # Here, we get the specific filter from the output of the convolution operation
            # x is a tensor of shape 1x512x28x28.(For layer 17)
            # So there are 512 unique filter outputs
            # Following line selects a filter from 512 filters so self.conv_output will become
            # a tensor of shape 28x28
            conv = 0
            for index, layer in enumerate(self.model):
                if hasattr(layer, 'convprobforward') and callable(layer.convprobforward):
                    if conv == self.selected_layer:
                        self.conv_output = x[0, self.selected_filter]
                        print(conv)
                        # print(self.conv_output)
                        # print(self.conv_output.shape)
                        break;
                    conv = conv + 1

            # self.conv_output = x[0, self.selected_filter]
            # Loss function is the mean of the output of the selected layer/filter
            # We try to minimize the mean of the output of that specific filter
            # beta = 2 ** (1- (1 + 1)) / (2 ** 1 - 1)
            loss = -torch.mean(self.conv_output)
            print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()))
            # Backward
            loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(processed_image)
            # Save image
            if i % 5 == 0:
                im_path = plots_path + 'layer_vis_l' + str(self.selected_layer) + \
                    '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                save_image(self.created_image, im_path)
 def visualise_layer_without_hooks(self,
                                   optim=None,
                                   iterations=30,
                                   save_only_last=True):
     # Process image and return variable
     self.processed_image = preprocess_image(self.created_image, self.mean,
                                             self.std, False)
     # Define optimizer for the image
     if optim == None:
         optimizer = Adam([self.processed_image], lr=0.1, weight_decay=1e-6)
     else:
         optimizer = optim
     for i in range(1, iterations + 1):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = self.processed_image
         for index, layer in enumerate(self.layers):
             # Forward pass layer by layer
             x = layer(x)
             if index == self.selected_layer:
                 # Only need to forward until the selected layer is reached
                 # Now, x is the output of the selected layer
                 break
         # Here, we get the specific filter from the output of the convolution operation
         # x is a tensor of shape 1x512x28x28.(For layer 17)
         # So there are 512 unique filter outputs
         # Following line selects a filter from 512 filters so self.conv_output will become
         # a tensor of shape 28x28
         self.conv_output = x[0, self.selected_filter]
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         if i % 10 == 0:
             print('Iteration:', str(i), 'Loss:',
                   "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(self.processed_image,
                                             self.mean, self.std)
         # Save image
         if not save_only_last:
             if i % 5 == 0:
                 im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                     '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                 save_image(self.created_image, im_path)
         else:
             if i == iterations:
                 im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                           '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                 save_image(self.created_image, im_path)
    def visualise_layer_with_hooks(self,
                                   optim=None,
                                   iterations=30,
                                   save_only_last=True):
        # Hook the selected layer
        self.hook_layer()
        # Process image and return variable
        self.processed_image = preprocess_image(self.created_image, self.mean,
                                                self.std, False)
        # Define optimizer for the image
        if optim == None:
            optimizer = Adam([self.processed_image], lr=0.1, weight_decay=1e-6)
        else:
            optimizer = optim

        for i in range(1, iterations + 1):
            optimizer.zero_grad()
            # Assign create image to a variable to move forward in the model
            x = self.processed_image
            for index, layer in enumerate(self.layers):
                # Forward pass layer by layer
                # x is not used after this point because it is only needed to trigger
                # the forward hook function
                x = layer(x)
                # Only need to forward until the selected layer is reached
                if index == self.selected_layer:
                    # (forward hook function triggered)
                    break
            # Loss function is the mean of the output of the selected layer/filter
            # We try to minimize the mean of the output of that specific filter
            loss = -torch.mean(self.conv_output)
            if i % 10 == 0:
                print('Iteration:', str(i), 'Loss:',
                      "{0:.2f}".format(loss.data.numpy()))
            # Backward
            loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(self.processed_image,
                                                self.mean, self.std)
            # Save image
            if not save_only_last:
                if i % 5 == 0:
                    im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                        '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                    save_image(self.created_image, im_path)
            else:
                if i == iterations:
                    im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                              '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                    save_image(self.created_image, im_path)
def deconv_visualization(model, pic, png_dir, demode):
    pic = pic[None,:,:,:]
    pic = pic.cuda()
    x = model(pic)
    x = x.cpu().detach().numpy()
    x = x.squeeze(0)
    x = np.transpose(x, (1,2,0))
    x = normalization(x)
    x = preprocess_image(x, resize_im=False)
    x = recreate_image(x)
    if not os.path.exists('./deconv/'+ png_dir):
        os.makedirs('./deconv/'+ png_dir)
    im_path = './deconv/'+ png_dir+ '/layer_vis_' + str(demode) + '.jpg'
    save_image(x, im_path)
def filter_visualization(model, selected_layer, selected_filter, png_dir):
    for name, param in net.named_parameters():
        if name == selected_layer + '.weight':
            x = param
    x = x[selected_filter,:,:,:]
    x = x.cpu().detach().numpy()
    x = x.transpose(1,2,0)
    x = normalization(x)
    x = preprocess_image(x, resize_im=False)
    x = recreate_image(x)
    if not os.path.exists('./filter/'+ png_dir):
        os.makedirs('./filter/'+ png_dir)
    im_path = './filter/'+ png_dir+ '/layer_vis_' + str(selected_layer) + \
                    '_f' + str(selected_filter) + '_iter' + str(i) + '.jpg'
    save_image(x, im_path)
def vis_layer(encorder, decorder, pic, png_dir, demode=1, index=1):
    """
    visualing the layer deconv result
    """
    pic = pic[None,:,:,:]
    pic = pic.cuda()
    encorder_out, indices = encorder(pic)
    num_feat = encorder_out.shape[1]
    if demode==1:
        activation_num = (encorder_out.shape[2]*encorder_out.shape[3])//10
    else :
        activation_num = (encorder_out.shape[2]*encorder_out.shape[3])//2
    # set other feature map activations to zero
    new_feat_map = encorder_out.clone()

    # choose the max activations map
    for i in range(0, num_feat):
        choose_map = new_feat_map[0, i, :, :]
#         print(choose_map)
        map_clone = choose_map.clone()
        new_map = torch.zeros(choose_map.shape, device='cuda')
        for j in range(activation_num):
            activation = torch.max(map_clone)
            new_map = torch.where(map_clone==activation,
                map_clone,
                new_map
                )
            map_clone= torch.where(map_clone==activation,
                torch.zeros(map_clone.shape, device='cuda'),
                map_clone
                )
        new_feat_map[0, i, :, :] =  new_map 
    
    deconv_output = decorder(new_feat_map, indices)
    x = deconv_output.cpu().detach().numpy()
    x = x.squeeze(0)
    x = np.transpose(x, (1,2,0))
    x = normalization(x)
    x = preprocess_image(x, resize_im=False)
    x = recreate_image(x)
    if not os.path.exists('./deconv/'+ png_dir):
        os.makedirs('./deconv/'+ png_dir)
    im_path = './deconv/'+ png_dir+ '/layer_vis_' + str(demode) +'_' + str(index)+ '.jpg'
    save_image(x, im_path)
    def visualise_layer_with_hooks(self,plots_path):
        # Hook the selected layer
        self.hook_layer()
        # Generate a random image
        random_image = np.uint8(np.random.uniform(150, 180, (227, 227, 3)))
        # Process image and return variable
        processed_image = preprocess_image(random_image, False)
        # Define optimizer for the image
        vi = GaussianVariationalInference(torch.nn.CrossEntropyLoss())
        optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
        for i in range(1, 101):
            optimizer.zero_grad()
            # Assign create image to a variable to move forward in the model
            x = processed_image
            kl = 0
            for index, layer in enumerate(self.model):
                # Forward pass layer by layer
                # x is not used after this point because it is only needed to trigger
                # the forward hook function
                if hasattr(layer, 'convprobforward') and callable(layer.convprobforward):
                    x, _kl, = layer.convprobforward(x)
                    kl += _kl
                # Only need to forward until the selected layer is reached
                    if index == self.selected_layer:
                        # (forward hook function triggered)
                        break
            # Loss function is the mean of the output of the selected layer/filter
            # We try to minimize the mean of the output of that specific filter
            # loss = -torch.mean(self.conv_output)
            loss = vi(outputs, y, kl, beta)
            print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()))
            # Backward
            loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(processed_image)
            # Save image
            if i % 5 == 0:
                im_path = plots_path + 'layer_vis_l' + str(self.selected_layer) + \
                    '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                print('saving image at:' + im_path)

                save_image(self.created_image, im_path)
    def generate(self):
        initial_learning_rate = self.lr
        loss = 10
        i = 0

        while loss >= self.min_loss:
            # Process image and return variable
            self.processed_image = preprocess_image(self.created_image,
                                                    self.mean, self.std, False)
            if self.optim == None:
                optimizer = Adam([self.processed_image],
                                 lr=initial_learning_rate,
                                 weight_decay=1e-6)
            else:
                optimizer = self.optim
            # Forward
            output = self.model(self.processed_image)
            # Target specific class
            class_loss = -output[0, self.target_class]
            if loss > class_loss.data.numpy():
                loss = class_loss.data.numpy()
            if i % 25 == 0:
                print('Iteration:', str(i), 'Loss',
                      "{0:.2f}".format(class_loss.data.numpy()))
            # Zero grads
            self.model.zero_grad()
            # Backward
            class_loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(self.processed_image,
                                                self.mean, self.std)
            if i % 25 == 0:
                # Save image
                im_path = '../generated/' + str(
                    self.name) + '_iteration_' + str(i) + '.jpg'
                save_image(self.created_image, im_path)
            i += 1
        im_path = '../generated/' + str(self.name) + '_iteration_final.jpg'
        save_image(self.created_image, im_path)
        return self.processed_image
Exemple #14
0
 def visualise_layer_without_hooks(self):
     # Process image and return variable
     # Generate a random image
     random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))
     # Process image and return variable
     processed_image = preprocess_image(random_image, False)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, 31):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image
         for index, layer in enumerate(self.model):
             # Forward pass layer by layer
             x = layer(x)
             if index == self.selected_layer:
                 # Only need to forward until the selected layer is reached
                 # Now, x is the output of the selected layer
                 break
         # Here, we get the specific filter from the output of the convolution operation
         # x is a tensor of shape 1x512x28x28.(For layer 17)
         # So there are 512 unique filter outputs
         # Following line selects a filter from 512 filters so self.conv_output will become
         # a tensor of shape 28x28
         self.conv_output = x[0, self.selected_filter]
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:',
               "{0:.2f}".format(loss[0].data.numpy()[0]))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(processed_image)
         # Save image
         if i % 30 == 0:
             im_path = self.path_to_output_files + '/layer_vis_l' + str(self.selected_layer) + \
                 '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
             save_image(self.created_image, im_path)
Exemple #15
0
    def generate(self):
        initial_learning_rate = 6
        #---# self.processed_image = preprocess_image(self.created_image, False)
        self.processed_image = transforms.functional.to_tensor(
            self.created_image).to(self.device)
        self.processed_image.unsqueeze_(0)
        # Convert to Pytorch variable

        # Define optimizer for the image

        for i in range(1, self.niter + 1):
            self.processed_image = Variable(self.processed_image,
                                            requires_grad=True)
            optimizer = Adam([self.processed_image],
                             lr=initial_learning_rate,
                             weight_decay=1e2)
            #optimizer = SGD([self.processed_image], lr=initial_learning_rate)
            # Process image and return variable

            # Forward
            output = self.model(self.processed_image)
            # Target specific class
            class_loss = -output[
                0, self.target_class]  #+self.processed_image.sum()/50
            print('Iteration:', str(i), 'Loss',
                  "{0:.2f}".format(class_loss.data.cpu().numpy()))
            # Zero grads
            self.model.zero_grad()
            # Backward
            class_loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.processed_image = torch.clamp(self.processed_image.detach(),
                                               min=0,
                                               max=1)
            self.created_image = recreate_image(self.processed_image.cpu())
            if i % 10 == 0:
                # Save image
                im_path = 'generated/c_specific_iteration_' + str(i) + '.png'
                save_image(self.created_image, im_path)
Exemple #16
0
 def visualise_layer_with_hooks(self):
     # Hook the selected layer
     self.hook_layer()
     # Generate a random image
     random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))
     print("image", random_image)
     # random_image = Image.open("dog.jpg")
     # Process image and return variable
     processed_image = preprocess_image(random_image, False)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, 31):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image
         for index, layer in enumerate(self.model):
             # Forward pass layer by layer
             # x is not used after this point because it is only needed to trigger
             # the forward hook function
             x = layer(x)
             # Only need to forward until the selected layer is reached
             if index == self.selected_layer:
                 # (forward hook function triggered)
                 break
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:',
               "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(processed_image)
         # Save image
         if i % 5 == 0:
             im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                 '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
             save_image(self.created_image, im_path)
Exemple #17
0
    def generate(self, iterations=150):
        """Generates class specific image

        Keyword Arguments:
            iterations {int} -- Total iterations for gradient ascent (default: {150})

        Returns:
            np.ndarray -- Final maximally activated class image
        """
        initial_learning_rate = 6
        for i in range(1, iterations):
            # Process image and return variable
            self.processed_image = preprocess_image(self.created_image, False)

            # Define optimizer for the image
            optimizer = SGD([self.processed_image], lr=initial_learning_rate)
            # Forward
            output = self.model(self.processed_image)
            # Target specific class
            class_loss = -output[0, self.target_class]

            if i % 10 == 0 or i == iterations-1:
                print('Iteration:', str(i), 'Loss',
                      "{0:.2f}".format(class_loss.data.numpy()))
            # Zero grads
            self.model.zero_grad()
            # Backward
            class_loss.backward()
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(self.processed_image)
            if i % 10 == 0 or i == iterations-1:
                # Save image
                im_path = '../generated/class_'+str(self.target_class)+'/c_'+str(self.target_class)+'_'+'iter_'+str(i)+'.png'
                save_image(self.created_image, im_path)

        return self.processed_image
    def visualise_layer_without_hooks(self):
        # Process image and return variable
       
        processed_image = self.pic[None,:,:,:]
        processed_image = processed_image.cuda()
        processed_image = Variable(processed_image, requires_grad=True)
        # Define optimizer for the image
        optimizer = Adam([processed_image], lr=self.lr, weight_decay=1e-6)
        for i in range(1, 201):
            optimizer.zero_grad()
            # Assign create image to a variable to move forward in the model
            x = processed_image
            for name, module in self.model._modules.items():
                # Forward pass layer by layer
                x = module(x)
                if name == self.selected_layer:
                    # Only need to forward until the selected layer is reached
                    # Now, x is the output of the selected layer
                    break

            self.conv_output = x[0, :]
#             self.conv_output = x[0, self.selected_filter ]
            # Loss function is the mean of the output of the selected layer/filter
            # We try to minimize the mean of the output of that specific filter
            loss = -torch.mean(self.conv_output)
            print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.cpu().numpy()))
            # Backward
            loss.backward()
            # Update image
            optimizer.step()
            # Save image
            if i % 200 == 0:
                # Recreate image
                processed_image = processed_image.cpu()
                self.created_image = recreate_image(processed_image)
                im_path = './generated/'+ self.png_dir+ '/layer_vis_' + str(self.selected_layer) +'_'+str(self.index)+ '.jpg'
                save_image(self.created_image, im_path)
    def visualise_layer_with_hooks(self):
        # Hook the selected layer
        self.hook_layer()

        # Generate a random image
        random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))

        # Process image and return variable
        processed_image = preprocess_image(random_image, False)

        # Define optimizer for the image, where the image is a variable
        optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)

        #for i in range(1, 31):
        for i in range(1, 2):  # TODO: TEMP FOR DEBUGGING  AND LEARNING
            optimizer.zero_grad(
            )  # Zero the generated gradients for this iteration

            # Assign create image to a variable to move forward in the model
            x = processed_image

            # Keep forward passing till reach the layer of interest
            # then, will trigger the hooked function call
            for index, layer in enumerate(self.model):
                # Forward pass layer by layer
                # x is not used after this point because it is only needed to trigger
                # the forward hook function
                x = layer(x)
                # Only need to forward until the selected layer is reached
                if index == self.selected_layer:
                    # (forward hook function triggered)
                    break
            # Now, have the convolution output at the layer of interest for the output depth of that layer

            # Want to minimize mean of the output of selected layer's filter

            # THe output are real numbers
            # The higher the value (more positive) => More activation
            # If you take the mean or sum, it just accounts for all position
            # Now if you minimize the negative of the mean, it's same as maximizing
            # Therefore, it's about maximizing the output
            # It's about finding the input image that maximizes the output!

            # Loss function is the mean of the output of the selected layer/filter
            # We try to minimize the mean of the output of that specific filter

            loss = -torch.mean(self.conv_output)

            print('Iteration:', str(i), 'Loss:',
                  "{0:.2f}".format(loss.data.numpy()))
            # Backward pass from the current loss tensor
            loss.backward(
            )  # Generate the gradients using a single backward pass

            # Update image
            optimizer.step(
            )  # Update the parameters using the generated gradients

            # Save image
            if (i % 5 == 0) or (i == 1):
                # Recreate image into a PIL tensor
                self.created_image = recreate_image(processed_image)
                im_path = '../generated/layer_vis_l' + str(self.selected_layer) + \
                    '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg'
                save_image(self.created_image, im_path)
    def generate(self, blur_freq=5, blur_rad=1, wd=0.0001, clipping_value=0.1):
        """Generates class specific image with enhancements to improve image quality. 
        See https://arxiv.org/abs/1506.06579 for details on each argument's effect on output quality. 
        

        Play around with combinations of arguments. Besides the defaults, this combination has produced good images:
        blur_freq=6, blur_rad=0.8, wd = 0.05

        Keyword Arguments:
            iterations {int} -- Total iterations for gradient ascent (default: {150})
            blur_freq {int} -- Frequency of Gaussian blur effect, in iterations (default: {6})
            blur_rad {float} -- Radius for gaussian blur, passed to PIL.ImageFilter.GaussianBlur() (default: {0.8})
            wd {float} -- Weight decay value for Stochastic Gradient Ascent (default: {0.05})
            clipping_value {None or float} -- Value for gradient clipping (default: {0.1})
        
        Returns:
            np.ndarray -- Final maximally activated class image
        """
        initial_learning_rate = 6
        for i in tqdm(range(1, self.iterations)):
            # Process image and return variable

            #implement gaussian blurring every ith iteration
            #to improve output
            if i % blur_freq == 0:
                self.processed_image = preprocess_and_blur_image(
                    self.created_image, False, blur_rad)
            else:
                self.processed_image = preprocess_and_blur_image(
                    self.created_image, False)

            if use_cuda:
                self.processed_image = self.processed_image.cuda()

            # Define optimizer for the image - use weight decay to add regularization
            # in SGD, wd = 2 * L2 regularization (https://bbabenko.github.io/weight-decay/)
            optimizer = SGD([self.processed_image],
                            lr=initial_learning_rate,
                            weight_decay=wd)
            # Forward
            output = self.model(self.processed_image)
            # Target specific class
            class_loss = -output[0, self.target_class]

            if i in np.linspace(0, self.iterations, 10, dtype=int):
                print('Iteration:', str(i), 'Loss',
                      "{0:.2f}".format(class_loss.data.cpu().numpy()))
            # Zero grads
            self.model.zero_grad()
            # Backward
            class_loss.backward()

            if clipping_value:
                torch.nn.utils.clip_grad_norm(self.model.parameters(),
                                              clipping_value)
            # Update image
            optimizer.step()
            # Recreate image
            self.created_image = recreate_image(self.processed_image.cpu())

            if i in np.linspace(0, self.iterations, 10, dtype=int):
                # Save image
                im_path = f'generated_class/class_{self.class_name}/c_{self.class_name}_iter_{i}_loss_{class_loss.data.cpu().numpy()}.jpg'
                save_image(self.created_image, im_path)
                print("Saved image at " + im_path)

        #save final image
        im_path = f'generated_class/class_{self.class_name}/c_{self.class_name}_iter_{i}_loss_{class_loss.data.cpu().numpy()}.jpg'
        save_image(self.created_image, im_path)

        #write file with regularization details
        with open(f'generated_class/class_{self.class_name}/run_details.txt',
                  'w') as f:
            f.write(f'Iterations: {self.iterations}\n')
            f.write(f'Blur freq: {blur_freq}\n')
            f.write(f'Blur radius: {blur_rad}\n')
            f.write(f'Weight decay: {wd}\n')
            f.write(f'Clip value: {clipping_value}\n')

        #rename folder path with regularization details for easy access
        os.rename(
            f'generated_class/class_{self.class_name}',
            f'generated_class/class_{self.class_name}_blurfreq_{blur_freq}_blurrad_{blur_rad}_wd{wd}'
        )
        return self.processed_image
#     net2 = net2.cuda()
#     encorder = ResNet_encorder(demode=2)
#     encorder = encorder.cuda()
#     decorder = ResNet_decorder2(demode=2)
#     decorder = decorder.cuda()
#     params=net.state_dict() 
#     for k,v in params.items():
#         print(k)
#         print(v)

    for index in range(16):
        trainloader, classes = data_prepare()
        pic = get_picture(trainloader)
        x = pic.cpu()[None, :, :, :]
        x = recreate_image(x)
        save_image(x, 'orginal_'+str(index)+'.jpg')
        encorder = ResNet_encorder(demode=1)
        encorder = encorder.cuda()
        decorder = ResNet_decorder2(demode=1)
        decorder = decorder.cuda()
        vis_layer(encorder, decorder, pic, 'conv1', demode=1, index=index)
    
        #define layer to visualize
        cnn_name = 'conv1'
        lr = 0.01
        layer_vis = CNNLayerVisualization(net, cnn_name, 0, pic, lr, cnn_name, index)
        layer_vis.visualise_layer_without_hooks()
        encorder = ResNet_encorder(demode=2)
        encorder = encorder.cuda()
        decorder = ResNet_decorder2(demode=2)
        decorder = decorder.cuda()