import plotly.graph_objs as go import traceback import pandas as pd import numpy as np from ml.ux.app import app from ml.ux.apps import common from ml.framework.database import db from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.non_linear_classification import non_separable_train layout = html.Div([ common.navbar("Classification - Linearly Non-Separable"), html.Div([], style = {'padding': '30px'}), html.Br(), html.Div([ html.H2("Load and Select a file from all the cleaned files:"), dbc.Button("Load Cleaned File", color="primary", id = 'nlcl-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}), dbc.Button("Clear", color="secondary", id = 'nlcl-clear-db', className="mr-2", style={'display': 'inline-block'}) ],style = {'margin': '10px'}), html.Div([ dcc.Dropdown( id = 'nlcl-selected-cleaned-file', options = common.get_options('clean'), value = None, multi = False )], style = {'margin': '10px', 'width': '50%'}),
import pandas as pd import numpy as np from ml.ux.app import app from ml.ux.apps import common from ml.framework.database import db from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.knn import knn_predict from ml.knn import load_input_csv from ml.knn import calculate_predict_accuracy layout = html.Div([ common.navbar("K Nearest Neighbors (KNN)"), html.Div([], style = {'padding': '30px'}), html.Br(), html.Div([ html.H2("Load and Select a file from all the cleaned files:"), dbc.Button("Load Cleaned File", color="primary", id = 'knn-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}), dbc.Button("Clear", color="secondary", id = 'knn-clear-db', className="mr-2", style={'display': 'inline-block'}) ],style = {'margin': '10px'}), html.Div([ dcc.Dropdown( id = 'knn-selected-cleaned-file', options = common.get_options('clean'), value = None, multi = False )], style = {'margin': '10px', 'width': '50%'}),
from ml.ux.app import app from ml.ux.apps import common from ml.framework.database import db from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.stochastic_neural_net import ann_training from ml.stochastic_neural_net import ann_testing from ml.stochastic_neural_net import ann_predict from ml.stochastic_neural_net_2_layer import ann_training_h2 from ml.stochastic_neural_net_2_layer import ann_testing_h2 from ml.stochastic_neural_net_2_layer import ann_predict_h2 layout = html.Div([ common.navbar("Stochastic Gradient Descent"), html.Div([], style={'padding': '30px'}), html.Br(), html.Div([ html.H2("Load and Select a file from all the cleaned files:"), dbc.Button("Load Cleaned File", color="primary", id='sgd-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}), dbc.Button("Clear", color="secondary", id='sgd-clear-db', className="mr-2", style={'display': 'inline-block'}) ],
import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output from ml.ux.app import app from ml.ux.apps import common from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.framework.database import db layout = html.Div([ common.navbar("Home"), html.Br(), html.H3( children= 'A tool developed as part of IISc CCE Machine Learning Course, 2020', style={'textAlign': 'center'}), html.Hr(), html.Br(), dcc.Upload(id='upload-data', children=html.Div([html.A('Drag and Drop or Select Files')], style={'font-size': '16px'}), style={ 'width': '50%', 'height': '50px', 'lineHeight': '50px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center',
import plotly.graph_objs as go import traceback import pandas as pd import numpy as np from ml.ux.app import app from ml.ux.apps import common from ml.framework.database import db from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.decision_tree.main import train layout = html.Div([ common.navbar("Decision Trees"), html.Div([], style = {'padding': '30px'}), html.Br(), html.H2('Decision Tree API Integration for Data Set banknote.csv'), html.Div([],id = "decision-trees-new-selected-div") ]) @app.callback( Output("decision-trees-new-selected-div", "children"), [Input('decision-trees', 'value')] ) def dtn_display_selected_file_scatter_plot(value): value = "banknote" db.put("dtn.file", value) file = value path = FileUtils.path('clean', file)
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from ml.ux.app import app from ml.ux.apps import common from ml.framework.database import db from ml.framework.file_utils import FileUtils from ml.framework.data_utils import DataUtils from ml.pca import perform_pca from ml.pca import dot_product layout = html.Div([ common.navbar("Principle Component Analysis (PCA)"), html.Div([], style={'padding': '30px'}), html.Br(), html.Div([ html.H2("Load and Select a file from all the cleaned files:"), dbc.Button("Load Cleaned File", color="primary", id='pca-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}), dbc.Button("Clear", color="secondary", id='pca-clear-db', className="mr-2", style={'display': 'inline-block'}) ],