import plotly.graph_objs as go
import traceback

import pandas as pd
import numpy as np

from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.database import db
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils

from ml.non_linear_classification import non_separable_train

layout = html.Div([
    common.navbar("Classification - Linearly Non-Separable"),
    html.Div([], style = {'padding': '30px'}),
    html.Br(),
    html.Div([
        html.H2("Load and Select a file from all the cleaned files:"),
        dbc.Button("Load Cleaned File", color="primary", id = 'nlcl-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}),
        dbc.Button("Clear", color="secondary", id = 'nlcl-clear-db', className="mr-2", style={'display': 'inline-block'})
    ],style = {'margin': '10px'}),
    html.Div([
    dcc.Dropdown(
        id = 'nlcl-selected-cleaned-file',
        options = common.get_options('clean'),
        value = None,
        multi = False
    )],
    style = {'margin': '10px', 'width': '50%'}),
Пример #2
0
import pandas as pd
import numpy as np

from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.database import db
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils

from ml.knn import knn_predict
from ml.knn import load_input_csv
from ml.knn import calculate_predict_accuracy

layout = html.Div([
    common.navbar("K Nearest Neighbors (KNN)"),
    html.Div([], style = {'padding': '30px'}),
    html.Br(),
    html.Div([
        html.H2("Load and Select a file from all the cleaned files:"),
        dbc.Button("Load Cleaned File", color="primary", id = 'knn-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}),
        dbc.Button("Clear", color="secondary", id = 'knn-clear-db', className="mr-2", style={'display': 'inline-block'})
    ],style = {'margin': '10px'}),
    html.Div([
    dcc.Dropdown(
        id = 'knn-selected-cleaned-file',
        options = common.get_options('clean'),
        value = None,
        multi = False
    )],
    style = {'margin': '10px', 'width': '50%'}),
from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.database import db
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils

from ml.stochastic_neural_net import ann_training
from ml.stochastic_neural_net import ann_testing
from ml.stochastic_neural_net import ann_predict

from ml.stochastic_neural_net_2_layer import ann_training_h2
from ml.stochastic_neural_net_2_layer import ann_testing_h2
from ml.stochastic_neural_net_2_layer import ann_predict_h2

layout = html.Div([
    common.navbar("Stochastic Gradient Descent"),
    html.Div([], style={'padding': '30px'}),
    html.Br(),
    html.Div([
        html.H2("Load and Select a file from all the cleaned files:"),
        dbc.Button("Load Cleaned File",
                   color="primary",
                   id='sgd-load-cleaned-files',
                   className="mr-2",
                   style={'display': 'inline-block'}),
        dbc.Button("Clear",
                   color="secondary",
                   id='sgd-clear-db',
                   className="mr-2",
                   style={'display': 'inline-block'})
    ],
Пример #4
0
import dash_core_components as dcc
import dash_bootstrap_components as dbc
import dash_html_components as html
from dash.dependencies import Input, Output

from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils
from ml.framework.database import db

layout = html.Div([
    common.navbar("Home"),
    html.Br(),
    html.H3(
        children=
        'A tool developed as part of IISc CCE Machine Learning Course, 2020',
        style={'textAlign': 'center'}),
    html.Hr(),
    html.Br(),
    dcc.Upload(id='upload-data',
               children=html.Div([html.A('Drag and Drop or Select Files')],
                                 style={'font-size': '16px'}),
               style={
                   'width': '50%',
                   'height': '50px',
                   'lineHeight': '50px',
                   'borderWidth': '1px',
                   'borderStyle': 'dashed',
                   'borderRadius': '5px',
                   'textAlign': 'center',
Пример #5
0
import plotly.graph_objs as go
import traceback

import pandas as pd
import numpy as np

from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.database import db
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils

from ml.decision_tree.main import train

layout = html.Div([
    common.navbar("Decision Trees"),
    html.Div([], style = {'padding': '30px'}),
    html.Br(),
    html.H2('Decision Tree API Integration for Data Set banknote.csv'),
    html.Div([],id = "decision-trees-new-selected-div")
])

@app.callback(
    Output("decision-trees-new-selected-div", "children"),
    [Input('decision-trees', 'value')]
)
def dtn_display_selected_file_scatter_plot(value):
    value = "banknote"
    db.put("dtn.file", value)
    file = value
    path = FileUtils.path('clean', file)
Пример #6
0
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

from ml.ux.app import app
from ml.ux.apps import common
from ml.framework.database import db
from ml.framework.file_utils import FileUtils
from ml.framework.data_utils import DataUtils

from ml.pca import perform_pca
from ml.pca import dot_product

layout = html.Div([
    common.navbar("Principle Component Analysis (PCA)"),
    html.Div([], style={'padding': '30px'}),
    html.Br(),
    html.Div([
        html.H2("Load and Select a file from all the cleaned files:"),
        dbc.Button("Load Cleaned File",
                   color="primary",
                   id='pca-load-cleaned-files',
                   className="mr-2",
                   style={'display': 'inline-block'}),
        dbc.Button("Clear",
                   color="secondary",
                   id='pca-clear-db',
                   className="mr-2",
                   style={'display': 'inline-block'})
    ],