# We can save the model into ONNX # format and compute the same predictions in many # platform using :epkg:`onnxruntime`. #################################### # Python runtime # ++++++++++++++ # # A python runtime can be used as well to compute # the prediction. It is not meant to be used into # production (it still relies on python), but it is # useful to investigate why the conversion went wrong. # It uses module :epkg:`mlprodict`. oinf = OnnxInference(onx, runtime="python_compiled") print(oinf) ########################################## # It works almost the same way. pred_pyrt = oinf.run({'X': X_test.astype(numpy.float32)})['variable'] print(diff(pred_skl, pred_pyrt)) ############################# # Final graph # +++++++++++ ax = plot_graphviz(oinf.to_dot()) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False)
# We can save the model into ONNX # format and compute the same predictions in many # platform using :epkg:`onnxruntime`. #################################### # Python runtime # ++++++++++++++ # # A python runtime can be used as well to compute # the prediction. It is not meant to be used into # production (it still relies on python), but it is # useful to investigate why the conversion went wrong. # It uses module :epkg:`mlprodict`. oinf = OnnxInference(onx, runtime="python_compiled") print(oinf) ########################################## # It works almost the same way. pred_pyrt = oinf.run({'X': X_test.astype(numpy.float32)})['variable'] print(diff(pred_skl, pred_pyrt)) ############################# # Final graph # +++++++++++ ax = plot_graphviz(oinf.to_dot(), dpi=100) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False)