def test_onnxt_json(self): idi = numpy.identity(2) idi2 = numpy.identity(2) * 2 onx = OnnxAdd(OnnxAdd('X', idi), idi2, output_names=['Y']) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}) oinf = OnnxInference(model_def) js = oinf.to_json() self.assertIn('"initializers": {', js)
def test_onnxt_json(self): idi = numpy.identity(2).astype(numpy.float32) idi2 = (numpy.identity(2) * 2).astype(numpy.float32) onx = OnnxAdd(OnnxAdd('X', idi, op_version=TARGET_OPSET), idi2, output_names=['Y'], op_version=TARGET_OPSET) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=TARGET_OPSET) oinf = OnnxInference(model_def) js = oinf.to_json() self.assertIn('"initializers": {', js)
def test_onnxt_lrc_iris_json(self): iris = load_iris() X, y = iris.data, iris.target X_train, _, y_train, __ = train_test_split(X, y, random_state=11) clr = LogisticRegression(solver="liblinear") clr.fit(X_train, y_train) model_def = to_onnx(clr, X_train.astype(numpy.float32)) oinf = OnnxInference(model_def) js = oinf.to_json() self.assertIn('"producer_name": "skl2onnx",', js) self.assertIn('"name": "output_label",', js) self.assertIn('"name": "output_probability",', js) self.assertIn('"name": "LinearClassifier",', js) self.assertIn('"coefficients": {', js) self.assertIn('"name": "Normalizer",', js) self.assertIn('"name": "Cast",', js) self.assertIn('"name": "ZipMap",', js)