def test_stft(): """Test stft and istft tight frame property.""" sfreq = 1000. # Hz f = 7. # Hz for T in [127, 128]: # try with even and odd numbers # Test with low frequency signal t = np.arange(T).astype(np.float) x = np.sin(2 * np.pi * f * t / sfreq) x = np.array([x, x + 1.]) wsize = 128 tstep = 4 X = stft(x, wsize, tstep) xp = istft(X, tstep, Tx=T) freqs = stftfreq(wsize, sfreq=1000) max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))] assert X.shape[1] == len(freqs) assert np.all(freqs >= 0.) assert np.abs(max_freq - f) < 1. assert_array_almost_equal(x, xp, decimal=6) # norm conservation thanks to tight frame property assert_almost_equal(np.sqrt(stft_norm2(X)), [linalg.norm(xx) for xx in x], decimal=6) # Test with random signal x = np.random.randn(2, T) wsize = 16 tstep = 8 X = stft(x, wsize, tstep) xp = istft(X, tstep, Tx=T) freqs = stftfreq(wsize, sfreq=1000) max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))] assert X.shape[1] == len(freqs) assert np.all(freqs >= 0.) assert_array_almost_equal(x, xp, decimal=6) # norm conservation thanks to tight frame property assert_almost_equal(np.sqrt(stft_norm2(X)), [linalg.norm(xx) for xx in x], decimal=6) # Try with empty array x = np.zeros((0, T)) X = stft(x, wsize, tstep) xp = istft(X, tstep, T) assert xp.shape == x.shape
def test_stft(): "Test stft and istft tight frame property" sfreq = 1000. # Hz f = 7. # Hz for T in [253, 256]: # try with even and odd numbers # Test with low frequency signal t = np.arange(T).astype(np.float) x = np.sin(2 * np.pi * f * t / sfreq) x = np.array([x, x + 1.]) wsize = 128 tstep = 4 X = stft(x, wsize, tstep) xp = istft(X, tstep, Tx=T) freqs = stftfreq(wsize, sfreq=1000) max_freq = freqs[np.argmax(np.sum(np.abs(X[0]) ** 2, axis=1))] assert_true(X.shape[1] == len(freqs)) assert_true(np.all(freqs >= 0.)) assert_true(np.abs(max_freq - f) < 1.) assert_array_almost_equal(x, xp, decimal=6) # norm conservation thanks to tight frame property assert_almost_equal(np.sqrt(stft_norm2(X)), [linalg.norm(xx) for xx in x], decimal=6) # Test with random signal x = np.random.randn(2, T) wsize = 16 tstep = 8 X = stft(x, wsize, tstep) xp = istft(X, tstep, Tx=T) freqs = stftfreq(wsize, sfreq=1000) max_freq = freqs[np.argmax(np.sum(np.abs(X[0]) ** 2, axis=1))] assert_true(X.shape[1] == len(freqs)) assert_true(np.all(freqs >= 0.)) assert_array_almost_equal(x, xp, decimal=6) # norm conservation thanks to tight frame property assert_almost_equal(np.sqrt(stft_norm2(X)), [linalg.norm(xx) for xx in x], decimal=6) # Try with empty array x = np.zeros((0, T)) X = stft(x, wsize, tstep) xp = istft(X, tstep, T) assert_true(xp.shape == x.shape)
def test_stft(): "Test stft and istft tight frame property" sfreq = 1000. # Hz f = 7. # Hz for T in [253, 256]: # try with even and odd numbers t = np.arange(T).astype(np.float) x = np.sin(2 * np.pi * f * t / sfreq) x = np.array([x, x + 1.]) wsize = 128 tstep = 4 X = stft(x, wsize, tstep) xp = istft(X, tstep, Tx=T) freqs = stftfreq(wsize, sfreq=1000) max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))] assert_true(X.shape[1] == len(freqs)) assert_true(np.all(freqs >= 0.)) assert_true(np.abs(max_freq - f) < 1.) assert_array_almost_equal(x, xp, decimal=6) # norm conservation thanks to tight frame property assert_almost_equal(np.sqrt(stft_norm2(X)), map(linalg.norm, x), decimal=2) # Try with empty array x = np.zeros((0, T)) X = stft(x, wsize, tstep) xp = istft(X, tstep, T) assert_true(xp.shape == x.shape)
def test_norm_epsilon(): """Test computation of espilon norm on TF coefficients.""" n_steps = 5 n_freqs = 4 Y = np.zeros(n_steps * n_freqs) l1_ratio = 0.5 assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), 0.) Y[0] = 2. assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), np.max(Y)) l1_ratio = 1. assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), np.max(Y)) # dummy value without random: Y = np.arange(n_steps * n_freqs).reshape(-1, ) l1_ratio = 0. assert_allclose( norm_epsilon(Y, l1_ratio, n_steps)**2, stft_norm2(Y.reshape(-1, n_freqs, n_steps)))
def test_norm_epsilon(): """Test computation of espilon norm on TF coefficients.""" tstep = np.array([2]) wsize = np.array([4]) n_times = 10 n_steps = np.ceil(n_times / tstep.astype(float)).astype(int) n_freqs = wsize // 2 + 1 n_coefs = n_steps * n_freqs phi = _Phi(wsize, tstep, n_coefs) Y = np.zeros(n_steps * n_freqs) l1_ratio = 0.5 assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.) Y[0] = 2. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) l1_ratio = 1. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) # dummy value without random: Y = np.arange(n_steps * n_freqs).reshape(-1, ) l1_ratio = 0. assert_allclose(norm_epsilon(Y, l1_ratio, phi) ** 2, stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0])))
def test_norm_epsilon(): """Test computation of espilon norm on TF coefficients.""" tstep = np.array([2]) wsize = np.array([4]) n_times = 10 n_steps = np.ceil(n_times / tstep.astype(float)).astype(int) n_freqs = wsize // 2 + 1 n_coefs = n_steps * n_freqs phi = _Phi(wsize, tstep, n_coefs) Y = np.zeros(n_steps * n_freqs) l1_ratio = 0.5 assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.) Y[0] = 2. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) l1_ratio = 1. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) # dummy value without random: Y = np.arange(n_steps * n_freqs).reshape(-1, ) l1_ratio = 0. assert_allclose( norm_epsilon(Y, l1_ratio, phi)**2, stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0])))