def test_stft():
    """Test stft and istft tight frame property."""
    sfreq = 1000.  # Hz
    f = 7.  # Hz
    for T in [127, 128]:  # try with even and odd numbers
        # Test with low frequency signal
        t = np.arange(T).astype(np.float)
        x = np.sin(2 * np.pi * f * t / sfreq)
        x = np.array([x, x + 1.])
        wsize = 128
        tstep = 4
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, Tx=T)

        freqs = stftfreq(wsize, sfreq=1000)

        max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))]

        assert X.shape[1] == len(freqs)
        assert np.all(freqs >= 0.)
        assert np.abs(max_freq - f) < 1.
        assert_array_almost_equal(x, xp, decimal=6)

        # norm conservation thanks to tight frame property
        assert_almost_equal(np.sqrt(stft_norm2(X)),
                            [linalg.norm(xx) for xx in x],
                            decimal=6)

        # Test with random signal
        x = np.random.randn(2, T)
        wsize = 16
        tstep = 8
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, Tx=T)

        freqs = stftfreq(wsize, sfreq=1000)

        max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))]

        assert X.shape[1] == len(freqs)
        assert np.all(freqs >= 0.)
        assert_array_almost_equal(x, xp, decimal=6)

        # norm conservation thanks to tight frame property
        assert_almost_equal(np.sqrt(stft_norm2(X)),
                            [linalg.norm(xx) for xx in x],
                            decimal=6)

        # Try with empty array
        x = np.zeros((0, T))
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, T)
        assert xp.shape == x.shape
Esempio n. 2
0
def test_stft():
    "Test stft and istft tight frame property"
    sfreq = 1000.  # Hz
    f = 7.  # Hz
    for T in [253, 256]:  # try with even and odd numbers
        # Test with low frequency signal
        t = np.arange(T).astype(np.float)
        x = np.sin(2 * np.pi * f * t / sfreq)
        x = np.array([x, x + 1.])
        wsize = 128
        tstep = 4
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, Tx=T)

        freqs = stftfreq(wsize, sfreq=1000)

        max_freq = freqs[np.argmax(np.sum(np.abs(X[0]) ** 2, axis=1))]

        assert_true(X.shape[1] == len(freqs))
        assert_true(np.all(freqs >= 0.))
        assert_true(np.abs(max_freq - f) < 1.)
        assert_array_almost_equal(x, xp, decimal=6)

        # norm conservation thanks to tight frame property
        assert_almost_equal(np.sqrt(stft_norm2(X)),
                            [linalg.norm(xx) for xx in x], decimal=6)

        # Test with random signal
        x = np.random.randn(2, T)
        wsize = 16
        tstep = 8
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, Tx=T)

        freqs = stftfreq(wsize, sfreq=1000)

        max_freq = freqs[np.argmax(np.sum(np.abs(X[0]) ** 2, axis=1))]

        assert_true(X.shape[1] == len(freqs))
        assert_true(np.all(freqs >= 0.))
        assert_array_almost_equal(x, xp, decimal=6)

        # norm conservation thanks to tight frame property
        assert_almost_equal(np.sqrt(stft_norm2(X)),
                            [linalg.norm(xx) for xx in x],
                            decimal=6)

        # Try with empty array
        x = np.zeros((0, T))
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, T)
        assert_true(xp.shape == x.shape)
Esempio n. 3
0
def test_stft():
    "Test stft and istft tight frame property"
    sfreq = 1000.  # Hz
    f = 7.  # Hz
    for T in [253, 256]:  # try with even and odd numbers
        t = np.arange(T).astype(np.float)
        x = np.sin(2 * np.pi * f * t / sfreq)
        x = np.array([x, x + 1.])
        wsize = 128
        tstep = 4
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, Tx=T)

        freqs = stftfreq(wsize, sfreq=1000)

        max_freq = freqs[np.argmax(np.sum(np.abs(X[0])**2, axis=1))]

        assert_true(X.shape[1] == len(freqs))
        assert_true(np.all(freqs >= 0.))
        assert_true(np.abs(max_freq - f) < 1.)

        assert_array_almost_equal(x, xp, decimal=6)

        # norm conservation thanks to tight frame property
        assert_almost_equal(np.sqrt(stft_norm2(X)),
                            map(linalg.norm, x),
                            decimal=2)

        # Try with empty array
        x = np.zeros((0, T))
        X = stft(x, wsize, tstep)
        xp = istft(X, tstep, T)
        assert_true(xp.shape == x.shape)
Esempio n. 4
0
def test_norm_epsilon():
    """Test computation of espilon norm on TF coefficients."""
    n_steps = 5
    n_freqs = 4
    Y = np.zeros(n_steps * n_freqs)
    l1_ratio = 0.5
    assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), 0.)

    Y[0] = 2.
    assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), np.max(Y))

    l1_ratio = 1.
    assert_allclose(norm_epsilon(Y, l1_ratio, n_steps), np.max(Y))
    # dummy value without random:
    Y = np.arange(n_steps * n_freqs).reshape(-1, )
    l1_ratio = 0.
    assert_allclose(
        norm_epsilon(Y, l1_ratio, n_steps)**2,
        stft_norm2(Y.reshape(-1, n_freqs, n_steps)))
Esempio n. 5
0
def test_norm_epsilon():
    """Test computation of espilon norm on TF coefficients."""
    tstep = np.array([2])
    wsize = np.array([4])
    n_times = 10
    n_steps = np.ceil(n_times / tstep.astype(float)).astype(int)
    n_freqs = wsize // 2 + 1
    n_coefs = n_steps * n_freqs
    phi = _Phi(wsize, tstep, n_coefs)
    Y = np.zeros(n_steps * n_freqs)
    l1_ratio = 0.5
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.)

    Y[0] = 2.
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))

    l1_ratio = 1.
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))
    # dummy value without random:
    Y = np.arange(n_steps * n_freqs).reshape(-1, )
    l1_ratio = 0.
    assert_allclose(norm_epsilon(Y, l1_ratio, phi) ** 2,
                    stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0])))
Esempio n. 6
0
def test_norm_epsilon():
    """Test computation of espilon norm on TF coefficients."""
    tstep = np.array([2])
    wsize = np.array([4])
    n_times = 10
    n_steps = np.ceil(n_times / tstep.astype(float)).astype(int)
    n_freqs = wsize // 2 + 1
    n_coefs = n_steps * n_freqs
    phi = _Phi(wsize, tstep, n_coefs)
    Y = np.zeros(n_steps * n_freqs)
    l1_ratio = 0.5
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.)

    Y[0] = 2.
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))

    l1_ratio = 1.
    assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))
    # dummy value without random:
    Y = np.arange(n_steps * n_freqs).reshape(-1, )
    l1_ratio = 0.
    assert_allclose(
        norm_epsilon(Y, l1_ratio, phi)**2,
        stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0])))