parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--resume', type=str, help='resume from model stored') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.model == 'CNN_MLP': model = CNN_MLP(args) else: model = RN(args) model_dirs = './model' bs = args.batch_size input_img = torch.FloatTensor(bs, 3, 75, 75) #画像の大きさをテンソル化 input_qst = torch.FloatTensor(bs, 11) #input_qstのベクトルをテンソル化 label = torch.LongTensor(bs) #長さ64のテンソル,ダミーのテストラベル if args.cuda: model.cuda() input_img = input_img.cuda() input_qst = input_qst.cuda() label = label.cuda()
args.dtype = torch.cuda.FloatTensor if args.cuda else torch.FloatTensor random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) # Safe even if no GPU from model import RN, CNN_MLP from model_vigil import RFES, RFESH if args.model == 'RFES': model = RFES(args) elif args.model == 'RFESH': model = RFESH(args) elif args.model == 'CNN_MLP': model = CNN_MLP(args) else: model = RN(args) print(args) # For loading the data (possibly a symlink to relational-networks/data) data_dirs = './data' bs = args.batch_size input_img = torch.FloatTensor(bs, 3, 75, 75) input_qst = torch.FloatTensor(bs, 11) label = torch.LongTensor(bs) if args.cuda: model.cuda()
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--resume', type=str, help='resume from model stored') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.model=='CNN_MLP': model = CNN_MLP(args) else: model = RN(args) model_dirs = './model' bs = args.batch_size input_img = torch.FloatTensor(bs, 3, 75, 75) input_qst = torch.FloatTensor(bs, 11) label = torch.LongTensor(bs) if args.cuda: model.cuda() input_img = input_img.cuda() input_qst = input_qst.cuda() label = label.cuda()