args.dtype = torch.cuda.FloatTensor if args.cuda else torch.FloatTensor random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) # Safe even if no GPU from model import RN, CNN_MLP from model_vigil import RFES, RFESH if args.model == 'RFES': model = RFES(args) elif args.model == 'RFESH': model = RFESH(args) elif args.model == 'CNN_MLP': model = CNN_MLP(args) else: model = RN(args) print(args) # For loading the data (possibly a symlink to relational-networks/data) data_dirs = './data' bs = args.batch_size input_img = torch.FloatTensor(bs, 3, 75, 75) input_qst = torch.FloatTensor(bs, 11) label = torch.LongTensor(bs) if args.cuda: model.cuda()
parser.add_argument( '--dropout_prob', type=float, default=0.0, help='dropout probability just before the final FCN (default: 0.0)') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() kwargs = dict(args._get_kwargs()) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.model == 'CNN_MLP': model = CNN_MLP(kwargs) elif args.model == 'RN': model = RN(kwargs) elif args.model == 'RN2': model = RN2(kwargs) else: model = MHDPA_RN(kwargs) #model_dirs = './model_SimpleMHOutput' #model_dirs = './model_2LMHOutput' model_dirs = './model_3LMHOutput' #model_dirs = './model_4LMHOutput' bs = args.batch_size input_img = torch.FloatTensor(bs, 3, 75, 75) input_qst = torch.FloatTensor(bs, 11) label = torch.LongTensor(bs)