def __init__(self, opt, c_in): super(Regressor, self).__init__() batchNorm = opt['use_BN'] self.deconv1 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=1, pad=1) self.deconv2 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=1, pad=1) self.deconv3 = model_utils.deconv_layer(128, 64) self.est_normal = self._make_output(64, 3, k=3, stride=1, pad=1)
def __init__(self, opt, c_in=4, c_out=256): super(FeatExtractor, self).__init__() batchNorm = opt['use_BN'] self.conv1 = model_utils.conv_layer(batchNorm, c_in, 32, k=3, stride=2, pad=1, afunc='LReLU') self.conv2 = model_utils.conv_layer(batchNorm, 32, 64, k=3, stride=2, pad=1) self.conv3 = model_utils.conv_layer(batchNorm, 64, 64, k=3, stride=1, pad=1) self.conv4 = model_utils.conv_layer(batchNorm, 64, 128, k=3, stride=2, pad=1) self.conv5 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=1, pad=1) self.conv6 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=2, pad=1) self.conv7 = model_utils.conv_layer(batchNorm, 128, 256, k=3, stride=1, pad=1)
def __init__(self, opt, c_in): super(Classifier, self).__init__() batchNorm = opt['use_BN'] self.conv1 = model_utils.conv_layer(batchNorm, 512, 128, k=3, stride=1, pad=1) self.conv2 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=2, pad=1) self.conv3 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=2, pad=1) self.conv4 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=2, pad=1) self.opt = opt self.dir_x_est = nn.Sequential( model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0), model_utils.output_conv(64, opt['dirs_cls'], k=1, stride=1, pad=0)) self.dir_y_est = nn.Sequential( model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0), model_utils.output_conv(64, opt['dirs_cls'], k=1, stride=1, pad=0)) self.int_est = nn.Sequential( model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0), model_utils.output_conv(64, opt['ints_cls'], k=1, stride=1, pad=0))
def __init__(self, opt, c_in=6, c_out=128): super(FeatExtractor, self).__init__() batchNorm = opt['use_BN'] self.conv1 = model_utils.conv_layer(batchNorm, c_in, 16, k=3, stride=1, pad=1) self.conv2 = model_utils.conv_layer(batchNorm, 16, 32, k=3, stride=2, pad=1) self.conv3 = model_utils.conv_layer(batchNorm, 32, 64, k=3, stride=1, pad=1) self.conv4 = model_utils.conv_layer(batchNorm, 64, 128, k=3, stride=2, pad=1) self.conv5 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=1, pad=1) self.conv6 = model_utils.deconv_layer(128, 128) self.conv7 = model_utils.conv_layer(batchNorm, 128, 128, k=3, stride=1, pad=1)