コード例 #1
0
 def __init__(self, opt, c_in):
     super(Regressor, self).__init__()
     batchNorm = opt['use_BN']
     self.deconv1 = model_utils.conv_layer(batchNorm,
                                           128,
                                           128,
                                           k=3,
                                           stride=1,
                                           pad=1)
     self.deconv2 = model_utils.conv_layer(batchNorm,
                                           128,
                                           128,
                                           k=3,
                                           stride=1,
                                           pad=1)
     self.deconv3 = model_utils.deconv_layer(128, 64)
     self.est_normal = self._make_output(64, 3, k=3, stride=1, pad=1)
コード例 #2
0
ファイル: L_Net.py プロジェクト: likehuaer/UPS-GCNet
 def __init__(self, opt, c_in=4, c_out=256):
     super(FeatExtractor, self).__init__()
     batchNorm = opt['use_BN']
     self.conv1 = model_utils.conv_layer(batchNorm,
                                         c_in,
                                         32,
                                         k=3,
                                         stride=2,
                                         pad=1,
                                         afunc='LReLU')
     self.conv2 = model_utils.conv_layer(batchNorm,
                                         32,
                                         64,
                                         k=3,
                                         stride=2,
                                         pad=1)
     self.conv3 = model_utils.conv_layer(batchNorm,
                                         64,
                                         64,
                                         k=3,
                                         stride=1,
                                         pad=1)
     self.conv4 = model_utils.conv_layer(batchNorm,
                                         64,
                                         128,
                                         k=3,
                                         stride=2,
                                         pad=1)
     self.conv5 = model_utils.conv_layer(batchNorm,
                                         128,
                                         128,
                                         k=3,
                                         stride=1,
                                         pad=1)
     self.conv6 = model_utils.conv_layer(batchNorm,
                                         128,
                                         128,
                                         k=3,
                                         stride=2,
                                         pad=1)
     self.conv7 = model_utils.conv_layer(batchNorm,
                                         128,
                                         256,
                                         k=3,
                                         stride=1,
                                         pad=1)
コード例 #3
0
ファイル: L_Net.py プロジェクト: likehuaer/UPS-GCNet
    def __init__(self, opt, c_in):
        super(Classifier, self).__init__()
        batchNorm = opt['use_BN']
        self.conv1 = model_utils.conv_layer(batchNorm,
                                            512,
                                            128,
                                            k=3,
                                            stride=1,
                                            pad=1)
        self.conv2 = model_utils.conv_layer(batchNorm,
                                            128,
                                            128,
                                            k=3,
                                            stride=2,
                                            pad=1)
        self.conv3 = model_utils.conv_layer(batchNorm,
                                            128,
                                            128,
                                            k=3,
                                            stride=2,
                                            pad=1)
        self.conv4 = model_utils.conv_layer(batchNorm,
                                            128,
                                            128,
                                            k=3,
                                            stride=2,
                                            pad=1)
        self.opt = opt

        self.dir_x_est = nn.Sequential(
            model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0),
            model_utils.output_conv(64, opt['dirs_cls'], k=1, stride=1, pad=0))

        self.dir_y_est = nn.Sequential(
            model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0),
            model_utils.output_conv(64, opt['dirs_cls'], k=1, stride=1, pad=0))

        self.int_est = nn.Sequential(
            model_utils.conv_layer(batchNorm, 128, 64, k=1, stride=1, pad=0),
            model_utils.output_conv(64, opt['ints_cls'], k=1, stride=1, pad=0))
コード例 #4
0
 def __init__(self, opt, c_in=6, c_out=128):
     super(FeatExtractor, self).__init__()
     batchNorm = opt['use_BN']
     self.conv1 = model_utils.conv_layer(batchNorm,
                                         c_in,
                                         16,
                                         k=3,
                                         stride=1,
                                         pad=1)
     self.conv2 = model_utils.conv_layer(batchNorm,
                                         16,
                                         32,
                                         k=3,
                                         stride=2,
                                         pad=1)
     self.conv3 = model_utils.conv_layer(batchNorm,
                                         32,
                                         64,
                                         k=3,
                                         stride=1,
                                         pad=1)
     self.conv4 = model_utils.conv_layer(batchNorm,
                                         64,
                                         128,
                                         k=3,
                                         stride=2,
                                         pad=1)
     self.conv5 = model_utils.conv_layer(batchNorm,
                                         128,
                                         128,
                                         k=3,
                                         stride=1,
                                         pad=1)
     self.conv6 = model_utils.deconv_layer(128, 128)
     self.conv7 = model_utils.conv_layer(batchNorm,
                                         128,
                                         128,
                                         k=3,
                                         stride=1,
                                         pad=1)