def run_inference_test(root_dir, device=torch.device("cuda:0")): images = sorted(glob(os.path.join(root_dir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose([ LoadNiftid(keys=["img", "seg"]), AsChannelFirstd(keys=["img", "seg"], channel_dim=-1), # resampling with align_corners=True or dtype=float64 will generate # slight different results between PyTorch 1.5 an 1.6 Spacingd(keys=["img", "seg"], pixdim=[1.2, 0.8, 0.7], mode=["bilinear", "nearest"], dtype=np.float32), ScaleIntensityd(keys=["img", "seg"]), ToTensord(keys=["img", "seg"]), ]) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inferene need to input 1 image in every iteration val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4) dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean") model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model_filename = os.path.join(root_dir, "best_metric_model.pth") model.load_state_dict(torch.load(model_filename)) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 # resampling with align_corners=True or dtype=float64 will generate # slight different results between PyTorch 1.5 an 1.6 saver = NiftiSaver(output_dir=os.path.join(root_dir, "output"), dtype=np.float32) for val_data in val_loader: val_images, val_labels = val_data["img"].to( device), val_data["seg"].to(device) # define sliding window size and batch size for windows inference sw_batch_size, roi_size = 4, (96, 96, 96) val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) value = dice_metric(y_pred=val_outputs, y=val_labels) not_nans = dice_metric.not_nans.item() metric_count += not_nans metric_sum += value.item() * not_nans val_outputs = (val_outputs.sigmoid() >= 0.5).float() saver.save_batch(val_outputs, val_data["img_meta_dict"]) metric = metric_sum / metric_count return metric
def test_shape(self, spatial_dim): spatial_dim = int(spatial_dim) model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(4, 8, 16), strides=(2, 2), num_res_units=2 ) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() # Initialize a dummy 3D tensor volume with shape (N,C,D,H,W) input_volume = torch.ones(1, 1, 64, 256, 256, device=device) # Remove spatial dim to slide across from the roi_size roi_size = list(input_volume.shape[2:]) roi_size.pop(spatial_dim) # Initialize and run inferer inferer = SliceInferer(roi_size=roi_size, spatial_dim=spatial_dim, sw_batch_size=1, cval=-1) result = inferer(input_volume, model) self.assertTupleEqual(result.shape, input_volume.shape) # test that the inferer can be run multiple times result = inferer(input_volume, model)
def run_inference_test(root_dir, device=torch.device("cuda:0")): images = sorted(glob(os.path.join(root_dir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose([ LoadNiftid(keys=["img", "seg"]), AsChannelFirstd(keys=["img", "seg"], channel_dim=-1), ScaleIntensityd(keys=["img", "seg"]), ToTensord(keys=["img", "seg"]), ]) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inferene need to input 1 image in every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate, pin_memory=torch.cuda.is_available()) model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model_filename = os.path.join(root_dir, "best_metric_model.pth") model.load_state_dict(torch.load(model_filename)) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 saver = NiftiSaver(output_dir=os.path.join(root_dir, "output"), dtype=int) for val_data in val_loader: val_images, val_labels = val_data["img"].to( device), val_data["seg"].to(device) # define sliding window size and batch size for windows inference sw_batch_size, roi_size = 4, (96, 96, 96) val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=True, to_onehot_y=False, add_sigmoid=True) metric_count += len(value) metric_sum += value.sum().item() val_outputs = (val_outputs.sigmoid() >= 0.5).float() saver.save_batch( val_outputs, { "filename_or_obj": val_data["img.filename_or_obj"], "affine": val_data["img.affine"] }) metric = metric_sum / metric_count return metric
def main(tempdir): monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_2d(128, 128, num_seg_classes=1) Image.fromarray(im.astype("uint8")).save(os.path.join(tempdir, f"img{i:d}.png")) Image.fromarray(seg.astype("uint8")).save(os.path.join(tempdir, f"seg{i:d}.png")) images = sorted(glob(os.path.join(tempdir, "img*.png"))) segs = sorted(glob(os.path.join(tempdir, "seg*.png"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose( [ LoadImaged(keys=["img", "seg"]), AddChanneld(keys=["img", "seg"]), ScaleIntensityd(keys="img"), ToTensord(keys=["img", "seg"]), ] ) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inference need to input 1 image in every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate) dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet( dimensions=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model.load_state_dict(torch.load("best_metric_model_segmentation2d_dict.pth")) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 saver = PNGSaver(output_dir="./output") for val_data in val_loader: val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device) # define sliding window size and batch size for windows inference roi_size = (96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) value = dice_metric(y_pred=val_outputs, y=val_labels) metric_count += len(value) metric_sum += value.item() * len(value) val_outputs = val_outputs.sigmoid() >= 0.5 saver.save_batch(val_outputs) metric = metric_sum / metric_count print("evaluation metric:", metric)
def main(): config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) tempdir = tempfile.mkdtemp() print('generating synthetic data to {} (this may take a while)'.format(tempdir)) for i in range(5): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i)) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i)) images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz'))) segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz'))) # define transforms for image and segmentation imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()]) segtrans = Compose([AddChannel(), ToTensor()]) val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False) # sliding window inference for one image at every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available()) device = torch.device('cuda:0') model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model.load_state_dict(torch.load('best_metric_model.pth')) model.eval() with torch.no_grad(): metric_sum = 0. metric_count = 0 saver = NiftiSaver(output_dir='./output') for val_data in val_loader: val_images, val_labels = val_data[0].to(device), val_data[1].to(device) # define sliding window size and batch size for windows inference roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=True, to_onehot_y=False, add_sigmoid=True) metric_count += len(value) metric_sum += value.sum().item() val_outputs = (val_outputs.sigmoid() >= 0.5).float() saver.save_batch(val_outputs, val_data[2]) metric = metric_sum / metric_count print('evaluation metric:', metric) shutil.rmtree(tempdir)
def main(tempdir): config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz"))) # define transforms for image and segmentation imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()]) segtrans = Compose([AddChannel(), ToTensor()]) val_ds = ImageDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False) # sliding window inference for one image at every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available()) dice_metric = DiceMetric(include_background=True, reduction="mean") post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model.load_state_dict(torch.load("best_metric_model_segmentation3d_array.pth")) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 saver = NiftiSaver(output_dir="./output") for val_data in val_loader: val_images, val_labels = val_data[0].to(device), val_data[1].to(device) # define sliding window size and batch size for windows inference roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) val_outputs = post_trans(val_outputs) value, _ = dice_metric(y_pred=val_outputs, y=val_labels) metric_count += len(value) metric_sum += value.item() * len(value) saver.save_batch(val_outputs, val_data[2]) metric = metric_sum / metric_count print("evaluation metric:", metric)
def main(tempdir): config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_2d(128, 128, num_seg_classes=1) Image.fromarray((im * 255).astype("uint8")).save(os.path.join(tempdir, f"img{i:d}.png")) Image.fromarray((seg * 255).astype("uint8")).save(os.path.join(tempdir, f"seg{i:d}.png")) images = sorted(glob(os.path.join(tempdir, "img*.png"))) segs = sorted(glob(os.path.join(tempdir, "seg*.png"))) # define transforms for image and segmentation imtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()]) segtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()]) val_ds = ArrayDataset(images, imtrans, segs, segtrans) # sliding window inference for one image at every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available()) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model.load_state_dict(torch.load("best_metric_model_segmentation2d_array.pth")) model.eval() with torch.no_grad(): for val_data in val_loader: val_images, val_labels = val_data[0].to(device), val_data[1].to(device) # define sliding window size and batch size for windows inference roi_size = (96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)] val_labels = decollate_batch(val_labels) # compute metric for current iteration dice_metric(y_pred=val_outputs, y=val_labels) for val_output in val_outputs: saver(val_output) # aggregate the final mean dice result print("evaluation metric:", dice_metric.aggregate().item()) # reset the status dice_metric.reset()
def test_shape(self, input_param, input_shape, expected_shape): net = UNet(**input_param).to(device) net.eval() with torch.no_grad(): result = net.forward(torch.randn(input_shape).to(device)) self.assertEqual(result.shape, expected_shape)
loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() print( f"{step}/{len(train_ds) // train_loader.batch_size}, train_loss: {loss.item():.4f}" ) epoch_len = len(train_ds) // train_loader.batch_size ## # writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step) ## writer.add_scalar("train_loss", epoch_loss, epoch + 1) epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 for val_data in val_loader: val_inputs, val_labels = ( val_data["image"].to(device), val_data["label"].to(device), ) roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_inputs, roi_size, sw_batch_size, model) #val_outputs = post_pred(val_outputs) #val_labels = post_label(val_labels) val_outputs = [
def test_shape(self, input_param, input_data, expected_shape): net = UNet(**input_param) net.eval() with torch.no_grad(): result = net.forward(input_data) self.assertEqual(result.shape, expected_shape)
def main(tempdir): monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose( [ LoadNiftid(keys=["img", "seg"]), AsChannelFirstd(keys=["img", "seg"], channel_dim=-1), ScaleIntensityd(keys="img"), ToTensord(keys=["img", "seg"]), ] ) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inference need to input 1 image in every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate) dice_metric = DiceMetric(include_background=True, reduction="mean") post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)]) # try to use all the available GPUs devices = get_devices_spec(None) model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(devices[0]) model.load_state_dict(torch.load("best_metric_model_segmentation3d_dict.pth")) # if we have multiple GPUs, set data parallel to execute sliding window inference if len(devices) > 1: model = torch.nn.DataParallel(model, device_ids=devices) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 saver = NiftiSaver(output_dir="./output") for val_data in val_loader: val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0]) # define sliding window size and batch size for windows inference roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) val_outputs = post_trans(val_outputs) value, _ = dice_metric(y_pred=val_outputs, y=val_labels) metric_count += len(value) metric_sum += value.item() * len(value) saver.save_batch(val_outputs, val_data["img_meta_dict"]) metric = metric_sum / metric_count print("evaluation metric:", metric)
def main(): monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) tempdir = tempfile.mkdtemp() print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose([ LoadNiftid(keys=["img", "seg"]), AsChannelFirstd(keys=["img", "seg"], channel_dim=-1), ScaleIntensityd(keys=["img", "seg"]), ToTensord(keys=["img", "seg"]), ]) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inference need to input 1 image in every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate, pin_memory=torch.cuda.is_available()) device = torch.device("cuda:0") model = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model.load_state_dict(torch.load("best_metric_model.pth")) model.eval() with torch.no_grad(): metric_sum = 0.0 metric_count = 0 saver = NiftiSaver(output_dir="./output") for val_data in val_loader: val_images, val_labels = val_data["img"].to( device), val_data["seg"].to(device) # define sliding window size and batch size for windows inference roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=True, to_onehot_y=False, add_sigmoid=True) metric_count += len(value) metric_sum += value.sum().item() val_outputs = (val_outputs.sigmoid() >= 0.5).float() saver.save_batch( val_outputs, { "filename_or_obj": val_data["img.filename_or_obj"], "affine": val_data["img.affine"] }) metric = metric_sum / metric_count print("evaluation metric:", metric) shutil.rmtree(tempdir)
def test_train_timing(self): images = sorted(glob(os.path.join(self.data_dir, "img*.nii.gz"))) segs = sorted(glob(os.path.join(self.data_dir, "seg*.nii.gz"))) train_files = [{ "image": img, "label": seg } for img, seg in zip(images[:32], segs[:32])] val_files = [{ "image": img, "label": seg } for img, seg in zip(images[-9:], segs[-9:])] device = torch.device("cuda:0") # define transforms for train and validation train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), # pre-compute foreground and background indexes # and cache them to accelerate training FgBgToIndicesd(keys="label", fg_postfix="_fg", bg_postfix="_bg"), # change to execute transforms with Tensor data EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), # randomly crop out patch samples from big # image based on pos / neg ratio # the image centers of negative samples # must be in valid image area RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(64, 64, 64), pos=1, neg=1, num_samples=4, fg_indices_key="label_fg", bg_indices_key="label_bg", ), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(keys=["image", "label"], prob=0.5), RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=(1, 2)), RandZoomd(keys=["image", "label"], prob=0.5, min_zoom=0.8, max_zoom=1.2, keep_size=True), RandRotated( keys=["image", "label"], prob=0.5, range_x=np.pi / 4, mode=("bilinear", "nearest"), align_corners=True, dtype=np.float64, ), RandAffined(keys=["image", "label"], prob=0.5, rotate_range=np.pi / 2, mode=("bilinear", "nearest")), RandGaussianNoised(keys="image", prob=0.5), RandStdShiftIntensityd(keys="image", prob=0.5, factors=0.05, nonzero=True), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), ]) max_epochs = 5 learning_rate = 2e-4 val_interval = 1 # do validation for every epoch # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training train_ds = CacheDataset(data=train_files, transform=train_transforms, cache_rate=1.0, num_workers=8) val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=5) # disable multi-workers because `ThreadDataLoader` works with multi-threads train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=4, shuffle=True) val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, batch=True) model = UNet( spatial_dims=3, in_channels=1, out_channels=2, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, norm=Norm.BATCH, ).to(device) # Novograd paper suggests to use a bigger LR than Adam, # because Adam does normalization by element-wise second moments optimizer = Novograd(model.parameters(), learning_rate * 10) scaler = torch.cuda.amp.GradScaler() post_pred = Compose( [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)]) post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) best_metric = -1 total_start = time.time() for epoch in range(max_epochs): epoch_start = time.time() print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step_start = time.time() step += 1 optimizer.zero_grad() # set AMP for training with torch.cuda.amp.autocast(): outputs = model(batch_data["image"]) loss = loss_function(outputs, batch_data["label"]) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() epoch_loss += loss.item() epoch_len = math.ceil(len(train_ds) / train_loader.batch_size) print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}" f" step time: {(time.time() - step_start):.4f}") epoch_loss /= step print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): for val_data in val_loader: roi_size = (96, 96, 96) sw_batch_size = 4 # set AMP for validation with torch.cuda.amp.autocast(): val_outputs = sliding_window_inference( val_data["image"], roi_size, sw_batch_size, model) val_outputs = [ post_pred(i) for i in decollate_batch(val_outputs) ] val_labels = [ post_label(i) for i in decollate_batch(val_data["label"]) ] dice_metric(y_pred=val_outputs, y=val_labels) metric = dice_metric.aggregate().item() dice_metric.reset() if metric > best_metric: best_metric = metric print( f"epoch: {epoch + 1} current mean dice: {metric:.4f}, best mean dice: {best_metric:.4f}" ) print( f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}" ) total_time = time.time() - total_start print( f"train completed, best_metric: {best_metric:.4f} total time: {total_time:.4f}" ) # test expected metrics self.assertGreater(best_metric, 0.95)
def train_process(fast=False): epoch_num = 10 val_interval = 1 train_trans, val_trans = transformations() train_ds = Dataset(data=train_files, transform=train_trans) val_ds = Dataset(data=val_files, transform=val_trans) train_loader = DataLoader(train_ds, batch_size=2, shuffle=True) val_loader = DataLoader(val_ds, batch_size=1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n1 = 16 model = UNet(dimensions=3, in_channels=1, out_channels=2, channels=(n1 * 1, n1 * 2, n1 * 4, n1 * 8, n1 * 16), strides=(2, 2, 2, 2)).to(device) loss_function = DiceLoss(to_onehot_y=True, softmax=True) post_pred = AsDiscrete(argmax=True, to_onehot=True, n_classes=2) post_label = AsDiscrete(to_onehot=True, n_classes=2) optimizer = torch.optim.Adam(model.parameters(), 1e-4, weight_decay=1e-5) best_metric = -1 best_metric_epoch = -1 best_metrics_epochs_and_time = [[], [], []] epoch_loss_values = list() metric_values = list() for epoch in range(epoch_num): print(f"epoch {epoch + 1}/{epoch_num}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = batch_data['image'].to( device), batch_data['label'].to(device) optimizer.zero_grad() outputs = model(inputs) loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_len = math.ceil(len(train_ds) / train_loader.batch_size) print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}") epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): metric_sum = 0. metric_count = 0 for val_data in val_loader: val_inputs, val_labels = val_data['image'].to( device), val_data['label'].to(device) val_outputs = model(val_inputs) val_outputs = post_pred(val_outputs) val_labels = post_label(val_labels) value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=False) metric_count += len(value) metric_sum += value.sum().item() metric = metric_sum / metric_count metric_values.append(metric) if metric > best_metric: best_metric = metric epochs_no_improve = 0 best_metric_epoch = epoch + 1 best_metrics_epochs_and_time[0].append(best_metric) best_metrics_epochs_and_time[1].append(best_metric_epoch) torch.save(model.state_dict(), 'sLUMRTL644.pth') else: epochs_no_improve += 1 print( f"current epoch: {epoch + 1} current mean dice: {metric:.4f}" f" best mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}" ) print( f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}" ) return epoch_num, epoch_loss_values, metric_values, best_metrics_epochs_and_time
def main(tempdir): print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, _ = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) files = [{"img": img} for img in images] # define pre transforms pre_transforms = Compose([ LoadImaged(keys="img"), EnsureChannelFirstd(keys="img"), Orientationd(keys="img", axcodes="RAS"), Resized(keys="img", spatial_size=(96, 96, 96), mode="trilinear", align_corners=True), ScaleIntensityd(keys="img"), EnsureTyped(keys="img"), ]) # define dataset and dataloader dataset = Dataset(data=files, transform=pre_transforms) dataloader = DataLoader(dataset, batch_size=2, num_workers=4) # define post transforms post_transforms = Compose([ EnsureTyped(keys="pred"), Activationsd(keys="pred", sigmoid=True), Invertd( keys= "pred", # invert the `pred` data field, also support multiple fields transform=pre_transforms, orig_keys= "img", # get the previously applied pre_transforms information on the `img` data field, # then invert `pred` based on this information. we can use same info # for multiple fields, also support different orig_keys for different fields meta_keys= "pred_meta_dict", # key field to save inverted meta data, every item maps to `keys` orig_meta_keys= "img_meta_dict", # get the meta data from `img_meta_dict` field when inverting, # for example, may need the `affine` to invert `Spacingd` transform, # multiple fields can use the same meta data to invert meta_key_postfix= "meta_dict", # if `meta_keys=None`, use "{keys}_{meta_key_postfix}" as the meta key, # if `orig_meta_keys=None`, use "{orig_keys}_{meta_key_postfix}", # otherwise, no need this arg during inverting nearest_interp= False, # don't change the interpolation mode to "nearest" when inverting transforms # to ensure a smooth output, then execute `AsDiscreted` transform to_tensor=True, # convert to PyTorch Tensor after inverting ), AsDiscreted(keys="pred", threshold=0.5), SaveImaged(keys="pred", meta_keys="pred_meta_dict", output_dir="./out", output_postfix="seg", resample=False), ]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) net.load_state_dict( torch.load("best_metric_model_segmentation3d_dict.pth")) net.eval() with torch.no_grad(): for d in dataloader: images = d["img"].to(device) # define sliding window size and batch size for windows inference d["pred"] = sliding_window_inference(inputs=images, roi_size=(96, 96, 96), sw_batch_size=4, predictor=net) # decollate the batch data into a list of dictionaries, then execute postprocessing transforms d = [post_transforms(i) for i in decollate_batch(d)]
def main(tempdir): print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, _ = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) files = [{"img": img} for img in images] # define pre transforms pre_transforms = Compose([ LoadImaged(keys="img"), EnsureChannelFirstd(keys="img"), Orientationd(keys="img", axcodes="RAS"), Resized(keys="img", spatial_size=(96, 96, 96), mode="trilinear", align_corners=True), ScaleIntensityd(keys="img"), ToTensord(keys="img"), ]) # define dataset and dataloader dataset = Dataset(data=files, transform=pre_transforms) dataloader = DataLoader(dataset, batch_size=2, num_workers=4) # define post transforms post_transforms = Compose([ Activationsd(keys="pred", sigmoid=True), AsDiscreted(keys="pred", threshold_values=True), Invertd(keys="pred", transform=pre_transforms, loader=dataloader, orig_keys="img", nearest_interp=True), SaveImaged(keys="pred_inverted", output_dir="./output", output_postfix="seg", resample=False), ]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = UNet( dimensions=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) net.load_state_dict( torch.load("best_metric_model_segmentation3d_dict.pth")) net.eval() with torch.no_grad(): for d in dataloader: images = d["img"].to(device) # define sliding window size and batch size for windows inference d["pred"] = sliding_window_inference(inputs=images, roi_size=(96, 96, 96), sw_batch_size=4, predictor=net) # execute post transforms to invert spatial transforms and save to NIfTI files post_transforms(d)
def main(tempdir): monai.config.print_config() logging.basicConfig(stream=sys.stdout, level=logging.INFO) print(f"generating synthetic data to {tempdir} (this may take a while)") for i in range(5): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz")) images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz"))) val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)] # define transforms for image and segmentation val_transforms = Compose( [ LoadImaged(keys=["img", "seg"]), AsChannelFirstd(keys=["img", "seg"], channel_dim=-1), ScaleIntensityd(keys="img"), EnsureTyped(keys=["img", "seg"]), ] ) val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) # sliding window inference need to input 1 image in every iteration val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) saver = SaveImage(output_dir="./output", output_ext=".nii.gz", output_postfix="seg") # try to use all the available GPUs devices = [torch.device("cuda" if torch.cuda.is_available() else "cpu")] #devices = get_devices_spec(None) model = UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(devices[0]) model.load_state_dict(torch.load("best_metric_model_segmentation3d_dict.pth")) # if we have multiple GPUs, set data parallel to execute sliding window inference if len(devices) > 1: model = torch.nn.DataParallel(model, device_ids=devices) model.eval() with torch.no_grad(): for val_data in val_loader: val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0]) # define sliding window size and batch size for windows inference roi_size = (96, 96, 96) sw_batch_size = 4 val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model) val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)] val_labels = decollate_batch(val_labels) meta_data = decollate_batch(val_data["img_meta_dict"]) # compute metric for current iteration dice_metric(y_pred=val_outputs, y=val_labels) for val_output, data in zip(val_outputs, meta_data): saver(val_output, data) # aggregate the final mean dice result print("evaluation metric:", dice_metric.aggregate().item()) # reset the status dice_metric.reset()