def test_ill_input_shape(self): net = UNet(spatial_dims=2, in_channels=1, out_channels=3, channels=(16, 32, 64), strides=(2, 2)) with eval_mode(net): with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match"): net.forward(torch.randn(2, 1, 16, 5))
def test_shape(self, input_param, input_shape, expected_shape): net = UNet(**input_param).to(device) net.eval() with torch.no_grad(): result = net.forward(torch.randn(input_shape).to(device)) self.assertEqual(result.shape, expected_shape)
def test_shape(self, input_param, input_data, expected_shape): net = UNet(**input_param) net.eval() with torch.no_grad(): result = net.forward(input_data) self.assertEqual(result.shape, expected_shape)