def identify_slits(slit_img, order=3, section=3, width=25, sigma=2.5, thres=6): """determine the x and y positions of the slits from identification in the image""" # split the image into sections determined from sect inc = mt.divide_image(slit_img, section) # determine where the slits are located, if option = True then only return the # edges, if option = False then return all the additional info. slits = mt.locate_slits(slit_img, inc, width, sigma, thres, False) # Check the detected slits for any variations in the amount of slits detected # for each image section and that the same amount of edges for left and right # have been detected for each image section. slit_positions = mt.get_slits(slits) return order, slit_positions
def specslit(image, outimage, outpref, exttype='auto', slitfile='', outputslitfile='', regprefix='', sections=3, width=25, sigma=2.2, thres=6, order=3, padding=5, yoffset=0, inter=False, clobber=True, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # check all the input and make sure that all the input needed is provided # by the user # read the image or image list and check if each in the list exist infiles = saltio.argunpack('Input', image) # unpack the outfiles outfiles = saltio.listparse( 'Outimages', outimage, outpref, infiles, '') # from the extraction type, check whether the input file is specified. # if the slitfile parameter is specified then use the slit files for # the extraction. if the extraction type is auto then use image for the # detection and the slit extraction if exttype == 'rsmt' or exttype == 'fits' or exttype == 'ascii' or exttype == 'ds9': slitfiles = saltio.argunpack('Slitfile', slitfile) if len(slitfiles) == 1: slitfiles = slitfiles * len(infiles) saltio.comparelists(infiles, slitfiles, 'image', 'slitfile') elif exttype == 'auto': slitfiles = infiles log.message( 'Extraction type is AUTO. Slit detection will be done from image') # read in if an optional ascii file is requested if len(outputslitfile) > 0: outslitfiles = saltio.argunpack('Outslitfiles', outputslitfile) saltio.comparelists( infiles, outslitfiles, 'image', 'outputslitfile') else: outslitfiles = [''] * len(infiles) # check if the width and sigma parameters were specified. # default is 25 and 2.2 if width < 10.: msg = 'The width parameter needs be a value larger than 10' raise SALTSpecError(msg) if sigma < 0.0: msg = 'Sigma must be greater than zero' raise SaltSpecError(msg) # check the treshold parameter. this needs to be specified by the user if thres <= 0.0: msg = 'Threshold must be greater than zero' raise SaltSpecError(msg) # check to make sure that the sections are greater than the order if sections <= order: msg = 'Number of sections must be greater than the order for the spline fit' raise SaltSpecError(msg) # run through each of the images and extract the slits for img, oimg, sfile, oslit in zip( infiles, outfiles, slitfiles, outslitfiles): log.message('Proccessing image %s' % img) # open the image struct = saltio.openfits(img) ylen, xlen = struct[1].data.shape xbin, ybin = saltkey.ccdbin(struct[0], img) # setup the VARIANCE and BPM frames if saltkey.found('VAREXT', struct[1]): varext = saltkey.get('VAREXT', struct[1]) varlist = [] else: varext = None # setup the BPM frames if saltkey.found('BPMEXT', struct[1]): bpmext = saltkey.get('BPMEXT', struct[1]) bpmlist = [] else: bpmext = None # open the slit definition file or identify the slits in the image slitmask = None ycheck = False if exttype == 'rsmt': log.message('Using slits from %s' % sfile) if yoffset is None: yoffset = 0 ycheck = True slitmask = mt.read_slitmask_from_xml(sfile) xpos = -0.3066 ypos = 0.0117 cx = int(xlen / 2.0) cy = int(ylen / 2.0) + ypos / 0.015 / ybin + yoffset order, slit_positions = mt.convert_slits_from_mask( slitmask, order=1, xbin=xbin, ybin=ybin, pix_scale=0.1267, cx=cx, cy=cy) sections = 1 elif exttype == 'fits': log.message('Using slits from %s' % sfile) order, slit_positions = read_slits_from_fits(sfile) elif exttype == 'ascii': log.message('Using slits from %s' % sfile) order, slit_positions = mt.read_slits_from_ascii(sfile) elif exttype == 'ds9': log.message('Using slits from %s' % sfile) order, slit_positions, slitmask = mt.read_slits_from_ds9( sfile, order=order) slitmask = None sections = 1 elif exttype == 'auto': log.message('Identifying slits in %s' % img) # identify the slits in the image order, slit_positions = identify_slits( struct[1].data, order, sections, width, sigma, thres) # write out the slit identifications if ofile has been supplied if oslit: log.message('Writing slit positions to %s' % oslit) mt.write_outputslitfile(slit_positions, oslit, order) if ycheck: slit_positions, dy = check_ypos(slit_positions, struct[1].data) log.message('Using an offset of {}'.format(dy)) # extract the slits spline_x = mt.divide_image(struct[1].data, sections) spline_x = 0.5 * (np.array(spline_x[:-1]) + np.array(spline_x[1:])) extracted_spectra, spline_positions = mt.extract_slits(slit_positions, spline_x, struct[1].data, order=order, padding=padding) if varext: extracted_var, var_positions = mt.extract_slits(slit_positions, spline_x, struct[varext].data, order=order, padding=padding) if bpmext: extracted_bpm, bpm_positions = mt.extract_slits(slit_positions, spline_x, struct[bpmext].data, order=order, padding=padding) # write out the data to the new array # create the new file hdulist = fits.HDUList([struct[0]]) # log the extracted spectra if needed log.message('', with_stdout=verbose) # setup output ds9 file if regprefix: regout = open( regprefix + os.path.basename(img).strip('.fits') + '.reg', 'w') regout.write('# Region file format: DS9 version 4.1\n') regout.write('# Filename: %s\n' % img) regout.write( 'global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\nphysical\n') # add each imglist = [] nslits = len(spline_positions) for i in range(nslits): y1 = spline_positions[i][0].min() y2 = spline_positions[i][1].max() msg = 'Extracted Spectra %i between %i to %i' % (i + 1, y1, y2) # log.message(msg, with_header=False, with_stdout=verbose) sdu = fits.ImageHDU( extracted_spectra[i], header=struct[1].header) if varext: vdu = fits.ImageHDU( extracted_var[i], header=struct[varext].header) sdu.header['VAREXT'] = i + nslits + 1 varlist.append(vdu) if bpmext: bdu = fits.ImageHDU( extracted_bpm[i], header=struct[bpmext].header) sdu.header['BPMEXT']= i + 2 * nslits + 1 bpmlist.append(bdu) imglist.append(sdu) # add in some additional keywords imglist[i].header['MINY'] = (y1, 'Lower Y value in original image') imglist[i].header['MAXY'] = (y2, 'Upper Y value in original image') if regprefix: xsize = struct[1].data.shape[1] xsize = int(0.5 * xsize) rtext = '' if slitmask: # rtext='%s, %8.7f, %8.7f, %3.2f' % (slitmask.slitlets.data[i]['name'], slitmask.slitlets.data[i]['targ_ra'], slitmask.slitlets.data[i]['targ_dec'], slitmask.slitlets.data[i]['slit_width']) pass regout.write('box(%i,%i, %i, %i) #text={%s}\n' % ( xsize, 0.5 * (y1 + y2), 2 * xsize, y2 - y1, rtext)) # add slit information if slitmask: imglist[i].header['SLITNAME'] = (slitmask.slitlets.data[i]['name'], 'Slit Name') imglist[i].header['SLIT_RA'] = (slitmask.slitlets.data[i]['targ_ra'], 'Slit RA') imglist[i].header['SLIT_DEC'] = (slitmask.slitlets.data[i]['targ_dec'], 'Slit DEC') imglist[i].header['SLIT'] = (slitmask.slitlets.data[i]['slit_width'], 'Slit Width') # add to the hdulist hdulist += imglist if varext: hdulist += varlist if bpmext: hdulist += bpmlist # write the slit positions to the header # create the binary table HDU that contains the split positions tbhdu = mt.slits_HDUtable(slit_positions, order) bintable_hdr = tbhdu.header # add the extname parameter to the extension tbhdu.header['EXTNAME'] = 'BINTABLE' # add the extname parameter to the extension hdulist[0].header['SLITEXT'] = len(hdulist) hdulist.append(tbhdu) # add addition header information about the mask if slitmask: hdulist[0].header['MASKNAME'] = (slitmask.mask_name, 'SlitMask Name') hdulist[0].header['MASK_RA'] = (slitmask.center_ra, 'SlitMask RA') hdulist[0].header['MASK_DEC'] = ( slitmask.center_dec, 'SlitMask DEC') hdulist[0].header['MASK_PA'] = ( slitmask.position_angle, 'SlitMask Position Angle') # write out the image saltio.writefits(hdulist, oimg, clobber)
def specslit(image, outimage, outpref, exttype='auto', slitfile='', outputslitfile='', regprefix='', sections=3, width=25, sigma=2.2, thres=6, order=3, padding=5, yoffset=0, inter=False, clobber=True, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # check all the input and make sure that all the input needed is provided # by the user # read the image or image list and check if each in the list exist infiles = saltio.argunpack('Input', image) # unpack the outfiles outfiles = saltio.listparse('Outimages', outimage, outpref, infiles, '') # from the extraction type, check whether the input file is specified. # if the slitfile parameter is specified then use the slit files for # the extraction. if the extraction type is auto then use image for the # detection and the slit extraction if exttype == 'rsmt' or exttype == 'fits' or exttype == 'ascii' or exttype == 'ds9': slitfiles = saltio.argunpack('Slitfile', slitfile) if len(slitfiles) == 1: slitfiles = slitfiles * len(infiles) saltio.comparelists(infiles, slitfiles, 'image', 'slitfile') elif exttype == 'auto': slitfiles = infiles log.message( 'Extraction type is AUTO. Slit detection will be done from image' ) # read in if an optional ascii file is requested if len(outputslitfile) > 0: outslitfiles = saltio.argunpack('Outslitfiles', outputslitfile) saltio.comparelists(infiles, outslitfiles, 'image', 'outputslitfile') else: outslitfiles = [''] * len(infiles) # check if the width and sigma parameters were specified. # default is 25 and 2.2 if width < 10.: msg = 'The width parameter needs be a value larger than 10' raise SALTSpecError(msg) if sigma < 0.0: msg = 'Sigma must be greater than zero' raise SaltSpecError(msg) # check the treshold parameter. this needs to be specified by the user if thres <= 0.0: msg = 'Threshold must be greater than zero' raise SaltSpecError(msg) # check to make sure that the sections are greater than the order if sections <= order: msg = 'Number of sections must be greater than the order for the spline fit' raise SaltSpecError(msg) # run through each of the images and extract the slits for img, oimg, sfile, oslit in zip(infiles, outfiles, slitfiles, outslitfiles): log.message('Proccessing image %s' % img) # open the image struct = saltio.openfits(img) ylen, xlen = struct[1].data.shape xbin, ybin = saltkey.ccdbin(struct[0], img) # setup the VARIANCE and BPM frames if saltkey.found('VAREXT', struct[1]): varext = saltkey.get('VAREXT', struct[1]) varlist = [] else: varext = None # setup the BPM frames if saltkey.found('BPMEXT', struct[1]): bpmext = saltkey.get('BPMEXT', struct[1]) bpmlist = [] else: bpmext = None # open the slit definition file or identify the slits in the image slitmask = None ycheck = False if exttype == 'rsmt': log.message('Using slits from %s' % sfile) if yoffset is None: yoffset = 0 ycheck = True slitmask = mt.read_slitmask_from_xml(sfile) xpos = -0.3066 ypos = 0.0117 cx = int(xlen / 2.0) cy = int(ylen / 2.0) + ypos / 0.015 / ybin + yoffset order, slit_positions = mt.convert_slits_from_mask( slitmask, order=1, xbin=xbin, ybin=ybin, pix_scale=0.1267, cx=cx, cy=cy) sections = 1 elif exttype == 'fits': log.message('Using slits from %s' % sfile) order, slit_positions = read_slits_from_fits(sfile) elif exttype == 'ascii': log.message('Using slits from %s' % sfile) order, slit_positions = mt.read_slits_from_ascii(sfile) elif exttype == 'ds9': log.message('Using slits from %s' % sfile) order, slit_positions, slitmask = mt.read_slits_from_ds9( sfile, order=order) slitmask = None sections = 1 elif exttype == 'auto': log.message('Identifying slits in %s' % img) # identify the slits in the image order, slit_positions = identify_slits(struct[1].data, order, sections, width, sigma, thres) # write out the slit identifications if ofile has been supplied if oslit: log.message('Writing slit positions to %s' % oslit) mt.write_outputslitfile(slit_positions, oslit, order) if ycheck: slit_positions, dy = check_ypos(slit_positions, struct[1].data) log.message('Using an offset of {}'.format(dy)) # extract the slits spline_x = mt.divide_image(struct[1].data, sections) spline_x = 0.5 * (np.array(spline_x[:-1]) + np.array(spline_x[1:])) extracted_spectra, spline_positions = mt.extract_slits( slit_positions, spline_x, struct[1].data, order=order, padding=padding) if varext: extracted_var, var_positions = mt.extract_slits( slit_positions, spline_x, struct[varext].data, order=order, padding=padding) if bpmext: extracted_bpm, bpm_positions = mt.extract_slits( slit_positions, spline_x, struct[bpmext].data, order=order, padding=padding) # write out the data to the new array # create the new file hdulist = fits.HDUList([struct[0]]) # log the extracted spectra if needed log.message('', with_stdout=verbose) # setup output ds9 file if regprefix: regout = open( regprefix + os.path.basename(img).strip('.fits') + '.reg', 'w') regout.write('# Region file format: DS9 version 4.1\n') regout.write('# Filename: %s\n' % img) regout.write( 'global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\nphysical\n' ) # add each imglist = [] nslits = len(spline_positions) for i in range(nslits): y1 = spline_positions[i][0].min() y2 = spline_positions[i][1].max() msg = 'Extracted Spectra %i between %i to %i' % (i + 1, y1, y2) # log.message(msg, with_header=False, with_stdout=verbose) sdu = fits.ImageHDU(extracted_spectra[i], header=struct[1].header) if varext: vdu = fits.ImageHDU(extracted_var[i], header=struct[varext].header) sdu.header['VAREXT'] = i + nslits + 1 varlist.append(vdu) if bpmext: bdu = fits.ImageHDU(extracted_bpm[i], header=struct[bpmext].header) sdu.header['BPMEXT'] = i + 2 * nslits + 1 bpmlist.append(bdu) imglist.append(sdu) # add in some additional keywords imglist[i].header['MINY'] = (y1, 'Lower Y value in original image') imglist[i].header['MAXY'] = (y2, 'Upper Y value in original image') if regprefix: xsize = struct[1].data.shape[1] xsize = int(0.5 * xsize) rtext = '' if slitmask: # rtext='%s, %8.7f, %8.7f, %3.2f' % (slitmask.slitlets.data[i]['name'], slitmask.slitlets.data[i]['targ_ra'], slitmask.slitlets.data[i]['targ_dec'], slitmask.slitlets.data[i]['slit_width']) pass regout.write('box(%i,%i, %i, %i) #text={%s}\n' % (xsize, 0.5 * (y1 + y2), 2 * xsize, y2 - y1, rtext)) # add slit information if slitmask: imglist[i].header['SLITNAME'] = ( slitmask.slitlets.data[i]['name'], 'Slit Name') imglist[i].header['SLIT_RA'] = ( slitmask.slitlets.data[i]['targ_ra'], 'Slit RA') imglist[i].header['SLIT_DEC'] = ( slitmask.slitlets.data[i]['targ_dec'], 'Slit DEC') imglist[i].header['SLIT'] = ( slitmask.slitlets.data[i]['slit_width'], 'Slit Width') # add to the hdulist hdulist += imglist if varext: hdulist += varlist if bpmext: hdulist += bpmlist # write the slit positions to the header # create the binary table HDU that contains the split positions tbhdu = mt.slits_HDUtable(slit_positions, order) bintable_hdr = tbhdu.header # add the extname parameter to the extension tbhdu.header['EXTNAME'] = 'BINTABLE' # add the extname parameter to the extension hdulist[0].header['SLITEXT'] = len(hdulist) hdulist.append(tbhdu) # add addition header information about the mask if slitmask: hdulist[0].header['MASKNAME'] = (slitmask.mask_name, 'SlitMask Name') hdulist[0].header['MASK_RA'] = (slitmask.center_ra, 'SlitMask RA') hdulist[0].header['MASK_DEC'] = (slitmask.center_dec, 'SlitMask DEC') hdulist[0].header['MASK_PA'] = (slitmask.position_angle, 'SlitMask Position Angle') # write out the image saltio.writefits(hdulist, oimg, clobber)