Exemple #1
0
 def __init__(self, select_largest=False, keep_all=True):
     self.pnet = PNet().to(device)
     self.rnet = RNet().to(device)
     self.onet = ONet().to(device)
     self.pnet.eval()
     self.rnet.eval()
     self.onet.eval()
     self.refrence = get_reference_facial_points(default_square=True)
Exemple #2
0
 def __init__(self):
     self.pnet = PNet().to(device)
     self.rnet = RNet().to(device)
     self.onet = ONet().to(device)
     self.pnet.eval()
     self.rnet.eval()
     self.onet.eval()
     self.refrence = get_reference_facial_points(default_square=True)
Exemple #3
0
 def __init__(self, device='cpu'):
     self.device = torch.device("cuda:0" if device == 'cuda' else "cpu")
     self.pnet = PNet().to(device)
     self.rnet = RNet().to(device)
     self.onet = ONet().to(device)
     self.pnet.eval()
     self.rnet.eval()
     self.onet.eval()
     self.refrence = get_reference_facial_points(default_square=True)
 def __init__(self, weight_path='mtcnn_pytorch/src/weights'):
     self.device = torch.device(
         "cuda" if torch.cuda.is_available() else "cpu")
     self.pnet = PNet(weight_path).to(self.device)
     self.rnet = RNet(weight_path).to(self.device)
     self.onet = ONet(weight_path).to(self.device)
     self.pnet.eval()
     self.rnet.eval()
     self.onet.eval()
     self.refrence = get_reference_facial_points(default_square=True)
Exemple #5
0
 def __init__(self,
              device=devi,
              thresholds=[0.3, 0.6, 0.8],
              nms_thresholds=[0.6, 0.6, 0.6]):
     self.pnet = PNet().to(device)
     self.rnet = RNet().to(device)
     self.onet = ONet().to(device)
     self.onet.eval()
     self.rnet.eval()
     self.onet.eval()
     self.refrence = get_reference_facial_points(default_square=True)
     self.device = device
     self.thresholds = thresholds
     self.nms_thresholds = nms_thresholds
Exemple #6
0
 def __init__(self):
     self.pnet = PNet()
     self.rnet = RNet()
     self.onet = ONet()
     self.onet.eval()
from mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
import torch
from PIL import Image
from config import get_config

# model definitions in get_nets.py

if __name__ == '__main__':
    conf = get_config(False)

    device = 'gpu'

    # P-Net
    model = PNet().to(device)  # to device
    model.eval()  # to eval mode
    example = torch.ones([1, 3, 100, 300]).to(device)

    traced = torch.jit.trace(model, example)
    traced.save(str(conf.save_path / 'pnet-gpu.pt'))
    a, b = model(example)

    print('P-Net')
    print('Input size {}'.format(
        example.size()))  # torch.Size([1, 3, 112, 112])
    print('A size     {}'.format(a.size()))  # torch.Size([1, 4, 51, 51])
    print('B size     {}'.format(b.size()))  # torch.Size([1, 2, 51, 51])

    # R-Net
    model = RNet().to(device)  # to device
    model.eval()  # to eval mode
    example = torch.ones([1, 3, 24, 24]).to(device)