Exemple #1
0
class MTCNN():
    def __init__(self):
        self.pnet = PNet().to(device)
        self.rnet = RNet().to(device)
        self.onet = ONet().to(device)
        self.pnet.eval()
        self.rnet.eval()
        self.onet.eval()
        self.refrence = get_reference_facial_points(default_square=True)

    def align(self, img):
        _, landmarks = self.detect_faces(img)
        facial5points = [[landmarks[0][j], landmarks[0][j + 5]]
                         for j in range(5)]
        warped_face = warp_and_crop_face(np.array(img),
                                         facial5points,
                                         self.refrence,
                                         crop_size=(112, 112))
        return Image.fromarray(warped_face)

    def align_multi(self, img, limit=None, min_face_size=20.0):
        boxes, landmarks = self.detect_faces(img, min_face_size)
        if limit:
            boxes = boxes[:limit]
            landmarks = landmarks[:limit]
        faces = []
        for landmark in landmarks:
            facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
            warped_face = warp_and_crop_face(np.array(img),
                                             facial5points,
                                             self.refrence,
                                             crop_size=(112, 112))
            faces.append(Image.fromarray(warped_face))
        return boxes, landmarks, faces

    def detect_faces(self,
                     image,
                     min_face_size=20.0,
                     thresholds=[0.6, 0.6, 0.7],
                     nms_thresholds=[0.7, 0.7, 0.7]):
        """
        Arguments:
            image: an instance of PIL.Image.
            min_face_size: a float number.
            thresholds: a list of length 3.
            nms_thresholds: a list of length 3.

        Returns:
            two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
            bounding boxes and facial landmarks.
        """

        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        #height, width, channel = image.shape
        min_length = min(height, width)

        min_detection_size = 12
        factor = 0.707  # sqrt(0.5)

        # scales for scaling the image
        scales = []

        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m

        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor**factor_count)
            min_length *= factor
            factor_count += 1

        # STAGE 1

        # it will be returned
        bounding_boxes = []

        with torch.no_grad():
            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image,
                                        self.pnet,
                                        scale=s,
                                        threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            if len(bounding_boxes) == 0:
                return [], []
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5],
                                           bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = torch.FloatTensor(img_boxes).to(device)

            output = self.rnet(img_boxes)
            offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[1])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]

            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 3

            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return [], []
            img_boxes = torch.FloatTensor(img_boxes).to(device)
            output = self.onet(img_boxes)
            landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
            offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[2])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]
            landmarks = landmarks[keep]

            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(
                xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(
                ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]

        return bounding_boxes, landmarks
Exemple #2
0
class MTCNN():
    def __init__(self):
        self.pnet = PNet().to(device)
        self.rnet = RNet().to(device)
        self.onet = ONet().to(device)
        self.pnet.eval()
        self.rnet.eval()
        self.onet.eval()
        self.refrence = get_reference_facial_points(default_square=True)
    
    def share_memory(self):
        self.pnet.share_memory()
        self.rnet.share_memory()
        self.onet.share_memory()
    
    def align(self, img):
        _, landmarks = self.detect_faces(img)
        facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
        warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112))
        # cvb.show_img(warped_face)
        return Image.fromarray(warped_face)
    
    def align_best(self, img, limit=None, min_face_size=20., **kwargs):
        try:
            boxes, landmarks = self.detect_faces(img, min_face_size,)
            img = to_numpy(img)
            if limit:
                boxes = boxes[:limit]
                landmarks = landmarks[:limit]
            nrof_faces = len(boxes)
            boxes = np.asarray(boxes)
            if nrof_faces > 0:
                det = boxes[:, 0:4]
                img_size = np.asarray(img.shape)[0:2]
                bindex = 0
                if nrof_faces > 1:
                    bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
                    img_center = img_size / 2
                    offsets = np.vstack(
                        [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
                    offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                    bindex = np.argmax(
                        bounding_box_size - offset_dist_squared * 2.0)  # some extra weight on the centering
                boxes = boxes[bindex, 0:4]
                landmarks = landmarks[bindex, :]
                facial5points = [[landmarks[j], landmarks[j + 5]] for j in range(5)]
                warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112))
                return to_image(warped_face)
            else:
                logging.warning(f'no face detected, {kwargs} ')
                return to_image(img).resize((112, 112), Image.BILINEAR)
        except Exception as e:
            logging.warning(f'face detect fail, err {e}')
            return to_image(img).resize((112, 112), Image.BILINEAR)
    
    def detect_faces(self, image, min_face_size=20.,
                     # thresholds=[0.7, 0.7, 0.8],
                     thresholds=[0.1, 0.1, 0.9],
                     nms_thresholds=[0.7, 0.7, 0.7]):
        """
        Arguments:
            image: an instance of PIL.Image.
            min_face_size: a float number.
            thresholds: a list of length 3.
            nms_thresholds: a list of length 3.

        Returns:
            two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
            bounding boxes and facial landmarks.
        """
        image = to_image(image)
        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        min_length = min(height, width)
        
        min_detection_size = 12
        factor = 0.707  # sqrt(0.5)
        
        # scales for scaling the image
        scales = []
        
        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m
        
        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor ** factor_count)
            min_length *= factor
            factor_count += 1
        
        # STAGE 1
        
        # it will be returned
        bounding_boxes = []
        
        with torch.no_grad():
            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
                bounding_boxes.append(boxes)
            
            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            bounding_boxes = np.vstack(bounding_boxes)
            
            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]
            
            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
            # shape [n_boxes, 5]
            
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
            
            # STAGE 2
            
            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = torch.FloatTensor(img_boxes).to(device)
            
            output = self.rnet(img_boxes)
            offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]
            thresh = thresholds[1]
            keep = np.where(probs[:, 1] > thresh)[0]
            # while keep.shape[0] == 0:
            #     thresh -= 0.01
            #     keep = np.where(probs[:, 1] > thresh)[0]
            # print('2 stage thresh', thresh)
            
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]
            
            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
            
            # STAGE 3
            
            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return [], []
            img_boxes = torch.FloatTensor(img_boxes).to(device)
            output = self.onet(img_boxes)
            landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
            offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]
            
            thresh = thresholds[2]
            keep = np.where(probs[:, 1] > thresh)[0]
            if len(keep) == 0:
                return [], []
            # while keep.shape[0] == 0:
            #     thresh -= 0.01
            #     keep = np.where(probs[:, 1] > thresh)[0]
            # print('3 stage one thresh', thresh)
            
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]
            landmarks = landmarks[keep]
            
            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]
            
            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]
        
        return bounding_boxes, landmarks
Exemple #3
0
class MTCNN():
    def __init__(self):
        self.pnet = PNet().to(device)
        self.rnet = RNet().to(device)
        self.onet = ONet().to(device)
        self.pnet.eval()
        self.rnet.eval()
        self.onet.eval()
        self.refrence = get_reference_facial_points(default_square=True)

    def align(self, img, crop_size=(112, 112), return_trans_inv=False):
        _, landmarks = self.detect_faces(img)
        if len(landmarks) == 0:
            return None if not return_trans_inv else (None, None)
        facial5points = [[landmarks[0][j], landmarks[0][j + 5]]
                         for j in range(5)]
        warped_face = warp_and_crop_face(np.array(img),
                                         facial5points,
                                         self.refrence,
                                         crop_size=crop_size,
                                         return_trans_inv=return_trans_inv)
        if return_trans_inv:
            return Image.fromarray(warped_face[0]), warped_face[1]
        else:
            return Image.fromarray(warped_face)

    def align_fully(self,
                    img,
                    crop_size=(112, 112),
                    return_trans_inv=False,
                    ori=[0, 1, 3],
                    fast_mode=True):
        ori_size = img.copy()
        h = img.size[1]
        w = img.size[0]
        sw = 320. if fast_mode else w
        scale = sw / w
        img = img.resize((int(w * scale), int(h * scale)))
        candi = []
        for i in ori:
            if len(candi) > 0:
                break
            if i > 0:
                rimg = img.transpose(i + 1)
            else:
                rimg = img
            box, landmarks = self.detect_faces(rimg,
                                               min_face_size=sw / 10,
                                               thresholds=[0.6, 0.7, 0.7])
            landmarks /= scale
            if len(landmarks) == 0:
                continue
            if i == 0:
                f5p = [[landmarks[0][j], landmarks[0][j + 5]]
                       for j in range(5)]
            elif i == 1:
                f5p = [[w - 1 - landmarks[0][j + 5], landmarks[0][j]]
                       for j in range(5)]
            elif i == 2:
                f5p = [[w - 1 - landmarks[0][j], h - 1 - landmarks[0][j + 5]]
                       for j in range(5)]
            elif i == 3:
                f5p = [[landmarks[0][j + 5], h - 1 - landmarks[0][j]]
                       for j in range(5)]
            candi.append((box[0][4], f5p))
        if len(candi) == 0:
            return None if not return_trans_inv else (None, None)
        while len(candi) > 1:
            if candi[0][0] > candi[1][0]:
                del candi[1]
            else:
                del candi[0]
        facial5points = candi[0][1]
        warped_face = warp_and_crop_face(np.array(ori_size),
                                         facial5points,
                                         self.refrence,
                                         crop_size=crop_size,
                                         return_trans_inv=return_trans_inv)
        if return_trans_inv:
            return Image.fromarray(warped_face[0]), warped_face[1]
        else:
            return Image.fromarray(warped_face)

    def align_multi(self,
                    img,
                    limit=None,
                    min_face_size=64.0,
                    crop_size=(112, 112)):
        boxes, landmarks = self.detect_faces(img, min_face_size)
        if len(landmarks) == 0:
            return None
        if limit:
            boxes = boxes[:limit]
            landmarks = landmarks[:limit]
        faces = []
        for landmark in landmarks:
            facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
            warped_face = warp_and_crop_face(np.array(img),
                                             facial5points,
                                             self.refrence,
                                             crop_size=crop_size)
            faces.append(Image.fromarray(warped_face))
        # return boxes, faces
        return faces

    def get_landmarks(self,
                      img,
                      min_face_size=32,
                      crop_size=(256, 256),
                      fast_mode=False,
                      ori=[0, 1, 3]):
        ori_size = img.copy()
        h = img.size[1]
        w = img.size[0]
        sw = 640. if fast_mode else w
        scale = sw / w
        img = img.resize((int(w * scale), int(h * scale)))
        min_face_size = min_face_size if not fast_mode else sw / 20
        candi = []
        boxes = np.zeros([0, 5])
        for i in ori:
            if i > 0:
                rimg = img.transpose(i + 1)
            else:
                rimg = img
            box, landmarks = self.detect_faces(rimg,
                                               min_face_size=min_face_size,
                                               thresholds=[0.6, 0.7, 0.7])
            landmarks /= scale
            if len(landmarks) == 0:
                continue
            if i == 0:
                f5p = [[landmarks[0][j], landmarks[0][j + 5]]
                       for j in range(5)]
            elif i == 1:
                f5p = [[w - 1 - landmarks[0][j + 5], landmarks[0][j]]
                       for j in range(5)]
                x1 = w - 1 - box[:, 1]
                y1 = box[:, 0]
                x2 = w - 1 - box[:, 3]
                y2 = box[:, 2]
                box[:, :4] = np.stack((x2, y1, x1, y2), axis=1)
            elif i == 2:
                f5p = [[w - 1 - landmarks[0][j], h - 1 - landmarks[0][j + 5]]
                       for j in range(5)]
                x1 = w - 1 - box[:, 0]
                y1 = h - 1 - box[:, 1]
                x2 = w - 1 - box[:, 2]
                y2 = h - 1 - box[:, 3]
                box[:, :4] = np.stack((x2, y2, x1, y1), axis=1)
            elif i == 3:
                f5p = [[landmarks[0][j + 5], h - 1 - landmarks[0][j]]
                       for j in range(5)]
                x1 = box[:, 1]
                y1 = h - 1 - box[:, 0]
                x2 = box[:, 3]
                y2 = h - 1 - box[:, 2]
                box[:, :4] = np.stack((x1, y2, x2, y1), axis=1)
            candi.append(f5p)
            boxes = np.concatenate((boxes, box), axis=0)
        # pick = nms(boxes)
        faces = []
        for idx, facial5points in enumerate(candi):
            # if idx not in pick:
            #     continue
            warped_face = warp_and_crop_face(np.array(ori_size),
                                             facial5points,
                                             self.refrence,
                                             crop_size=crop_size,
                                             return_trans_inv=False)
            faces.append((warped_face, facial5points))
        return faces

    def detect_faces(self,
                     image,
                     min_face_size=64.0,
                     thresholds=[0.6, 0.7, 0.8],
                     nms_thresholds=[0.7, 0.7, 0.7]):
        """
        Arguments:
            image: an instance of PIL.Image.
            min_face_size: a float number.
            thresholds: a list of length 3.
            nms_thresholds: a list of length 3.

        Returns:
            two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
            bounding boxes and facial landmarks.
        """

        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        min_length = min(height, width)

        min_detection_size = 12
        factor = 0.707  # sqrt(0.5)

        # scales for scaling the image
        scales = []

        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m

        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor**factor_count)
            min_length *= factor
            factor_count += 1

        # STAGE 1

        # it will be returned
        bounding_boxes = []

        with torch.no_grad():
            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image,
                                        self.pnet,
                                        scale=s,
                                        threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            if len(bounding_boxes) == 0:
                return np.zeros([0]), np.zeros([0])
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5],
                                           bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = torch.FloatTensor(img_boxes).to(device)

            output = self.rnet(img_boxes)
            offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[1])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]

            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 3

            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return np.zeros([0]), np.zeros([0])
            img_boxes = torch.FloatTensor(img_boxes).to(device)
            output = self.onet(img_boxes)
            landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
            offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[2])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]
            landmarks = landmarks[keep]

            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(
                xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(
                ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]

        return bounding_boxes, landmarks
from mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
import torch
from PIL import Image
from config import get_config

# model definitions in get_nets.py

if __name__ == '__main__':
    conf = get_config(False)

    device = 'gpu'

    # P-Net
    model = PNet().to(device)  # to device
    model.eval()  # to eval mode
    example = torch.ones([1, 3, 100, 300]).to(device)

    traced = torch.jit.trace(model, example)
    traced.save(str(conf.save_path / 'pnet-gpu.pt'))
    a, b = model(example)

    print('P-Net')
    print('Input size {}'.format(
        example.size()))  # torch.Size([1, 3, 112, 112])
    print('A size     {}'.format(a.size()))  # torch.Size([1, 4, 51, 51])
    print('B size     {}'.format(b.size()))  # torch.Size([1, 2, 51, 51])

    # R-Net
    model = RNet().to(device)  # to device
    model.eval()  # to eval mode
    example = torch.ones([1, 3, 24, 24]).to(device)