def test_trainer_ba(self): """Test the `data-batch` subcommands.""" with db.session_scope(META_FILE) as (session, metadata): cache = PhenotypeCache() cache.make(IMAGE_DIR, TEMP_DIR, self.config, update=False) train_data = BatchMakeTrainData(self.config, TEMP_DIR) train_data.batch_export(self.train_dir)
def test_trainer_ab(self): """Test the `data` subcommands.""" filter_ = self.config.classification.filter.as_dict() with db.session_scope(META_FILE) as (session, metadata): cache = PhenotypeCache() cache.make(IMAGE_DIR, TEMP_DIR, self.config, update=False) train_data = MakeTrainData(self.config, TEMP_DIR) train_data.export(self.train_file, filter_)
def validate(config, k, autoskip=False): """Start validation routines.""" with db.session_scope(META_FILE) as (session, metadata): cache = PhenotypeCache() cache.make(IMAGE_DIR, TEMP_DIR, config, update=False) validator = Validator(config, TEMP_DIR, TEMP_DIR) scores = validator.k_fold_xval_stratified(k, autoskip) print for path in sorted(scores.keys()): values = np.array(scores[path]) print "Accuracy[{path}]: {mean:.2%} (+/- {sd:.2%})".format(**{ 'path': path, 'mean': values.mean(), 'sd': values.std() * 2 })