def test_distributions(): check_init_args(PDF, ["x", "p"]) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) assert (repr(PDF( [1, 2], [0.4, 0.6])) == "PDF(x=array([1., 2.]), p=array([0.4, 0.6]))") check_init_args(Uniform, ["low", "high", "integer"]) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) assert repr(Uniform(0, 1)) == "Uniform(low=0, high=1)" assert repr(Uniform( 0, 5, integer=True)) == "Uniform(low=0, high=5, integer=True)" check_init_args(Gaussian, ["mean", "std"]) check_repr(Gaussian(0, 2)) assert repr(Gaussian(1, 0.1)) == "Gaussian(mean=1, std=0.1)" check_init_args(Exponential, ["scale", "shift", "high"]) check_repr(Exponential(2.0)) check_repr(Exponential(2.0, shift=0.1)) check_repr(Exponential(2.0, shift=0.1, high=10.0)) assert repr(Exponential(2.0)) == "Exponential(scale=2.0)" check_init_args(UniformHypersphere, ["surface", "min_magnitude"]) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) assert repr(UniformHypersphere()) == "UniformHypersphere()" assert repr( UniformHypersphere(surface=True)) == "UniformHypersphere(surface=True)" check_init_args(Choice, ["options", "weights"]) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) assert repr(Choice([1, 2, 3])) == "Choice(options=array([1., 2., 3.]))" assert (repr( Choice([1, 2, 3], weights=[0.1, 0.5, 0.4]) ) == "Choice(options=array([1., 2., 3.]), weights=array([0.1, 0.5, 0.4]))") check_init_args(Samples, ["samples"]) check_repr(Samples([3, 2, 1])) assert repr(Samples([3, 2, 1])) == "Samples(samples=array([3., 2., 1.]))" check_init_args(SqrtBeta, ["n", "m"]) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) assert repr(SqrtBeta(3)) == "SqrtBeta(n=3)" assert repr(SqrtBeta(3, 2)) == "SqrtBeta(n=3, m=2)" check_init_args(SubvectorLength, ["dimensions", "subdimensions"]) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) assert repr(SubvectorLength(3)) == "SubvectorLength(dimensions=3)" check_init_args(CosineSimilarity, ["dimensions"]) check_repr(CosineSimilarity(6)) assert repr(CosineSimilarity(6)) == "CosineSimilarity(dimensions=6)"
def test_sqrt_beta(n, m, rng): num_samples = 1000 num_bins = 5 vectors = rng.randn(num_samples, n + m) vectors /= npext.norm(vectors, axis=1, keepdims=True) expectation, _ = np.histogram(npext.norm(vectors[:, :m], axis=1), bins=num_bins) dist = SqrtBeta(n, m) samples = dist.sample(num_samples, 1, rng=rng) histogram, _ = np.histogram(samples, bins=num_bins) assert np.all(np.abs(np.asfarray(histogram - expectation) / num_samples) < 0.16)
def test_sqrt_beta_analytical(n, m, rng, allclose): """Tests pdf, cdf, and ppf of SqrtBeta distribution.""" pytest.importorskip("scipy") # beta and betainc dt = 0.001 x = np.arange(dt, 1 + dt, dt) dist = SqrtBeta(n, m) pdf = dist.pdf(x) cdf = dist.cdf(x) ppf = dist.ppf(cdf) # The pdf should reflect the samples num_samples = 2500 num_bins = 5 samples = dist.sample(num_samples, rng=rng) act_hist, _ = np.histogram(samples, bins=num_bins) bin_points = np.linspace(0, 1, num_bins + 1) bin_cdf = dist.cdf(bin_points) exp_freq = bin_cdf[1:] - bin_cdf[:-1] assert np.all(np.abs(np.asfarray(act_hist) / num_samples - exp_freq) < 0.1) # The cdf should be the accumulated pdf assert allclose(cdf, np.cumsum(pdf) * dt, atol=0.01) # The ppf should give back x assert allclose(x, ppf, atol=0.01)
def test_argreprs(): def check_init_args(cls, args): assert getfullargspec(cls.__init__).args[1:] == args def check_repr(obj): assert eval(repr(obj)) == obj check_init_args(PDF, ['x', 'p']) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) check_init_args(Uniform, ['low', 'high', 'integer']) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) check_init_args(Gaussian, ['mean', 'std']) check_repr(Gaussian(0, 2)) check_init_args(Exponential, ['scale', 'shift', 'high']) check_repr(Exponential(2.)) check_repr(Exponential(2., shift=0.1)) check_repr(Exponential(2., shift=0.1, high=10.)) check_init_args(UniformHypersphere, ['surface', 'min_magnitude']) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) check_init_args(Choice, ['options', 'weights']) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) check_init_args(Samples, ['samples']) check_repr(Samples([3, 2, 1])) check_init_args(SqrtBeta, ['n', 'm']) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) check_init_args(SubvectorLength, ['dimensions', 'subdimensions']) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) check_init_args(CosineSimilarity, ['dimensions']) check_repr(CosineSimilarity(6))
def test_argreprs(): def check_init_args(cls, args): assert getfullargspec(cls.__init__).args[1:] == args def check_repr(obj): assert eval(repr(obj)) == obj check_init_args(PDF, ["x", "p"]) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) check_init_args(Uniform, ["low", "high", "integer"]) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) check_init_args(Gaussian, ["mean", "std"]) check_repr(Gaussian(0, 2)) check_init_args(Exponential, ["scale", "shift", "high"]) check_repr(Exponential(2.0)) check_repr(Exponential(2.0, shift=0.1)) check_repr(Exponential(2.0, shift=0.1, high=10.0)) check_init_args(UniformHypersphere, ["surface", "min_magnitude"]) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) check_init_args(Choice, ["options", "weights"]) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) check_init_args(Samples, ["samples"]) check_repr(Samples([3, 2, 1])) check_init_args(SqrtBeta, ["n", "m"]) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) check_init_args(SubvectorLength, ["dimensions", "subdimensions"]) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) check_init_args(CosineSimilarity, ["dimensions"]) check_repr(CosineSimilarity(6))