Exemple #1
0
def test_sqrt_beta_analytical(n, m, rng, allclose):
    """Tests pdf, cdf, and ppf of SqrtBeta distribution."""
    pytest.importorskip("scipy")  # beta and betainc

    dt = 0.001
    x = np.arange(dt, 1 + dt, dt)

    dist = SqrtBeta(n, m)

    pdf = dist.pdf(x)
    cdf = dist.cdf(x)
    ppf = dist.ppf(cdf)

    # The pdf should reflect the samples
    num_samples = 2500
    num_bins = 5

    samples = dist.sample(num_samples, rng=rng)
    act_hist, _ = np.histogram(samples, bins=num_bins)
    bin_points = np.linspace(0, 1, num_bins + 1)
    bin_cdf = dist.cdf(bin_points)
    exp_freq = bin_cdf[1:] - bin_cdf[:-1]
    assert np.all(np.abs(np.asfarray(act_hist) / num_samples - exp_freq) < 0.1)

    # The cdf should be the accumulated pdf
    assert allclose(cdf, np.cumsum(pdf) * dt, atol=0.01)

    # The ppf should give back x
    assert allclose(x, ppf, atol=0.01)
Exemple #2
0
def test_sqrt_beta(n, m, rng):
    num_samples = 1000
    num_bins = 5

    vectors = rng.randn(num_samples, n + m)
    vectors /= npext.norm(vectors, axis=1, keepdims=True)
    expectation, _ = np.histogram(npext.norm(vectors[:, :m], axis=1), bins=num_bins)

    dist = SqrtBeta(n, m)
    samples = dist.sample(num_samples, 1, rng=rng)
    histogram, _ = np.histogram(samples, bins=num_bins)

    assert np.all(np.abs(np.asfarray(histogram - expectation) / num_samples) < 0.16)