Exemple #1
0
def test_components_img():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    n_components = 3
    multi_pca = MultiPCA(mask=mask_img,
                         n_components=n_components,
                         random_state=0)
    # fit to the data and test for components images
    multi_pca.fit(data)
    components_img = multi_pca.components_img_
    assert_true(isinstance(components_img, nibabel.Nifti1Image))
    check_shape = data[0].shape[:3] + (n_components, )
    assert_equal(components_img.shape, check_shape)
    assert_equal(len(components_img.shape), 4)
def subject_pca(subject_dir, n_components=512, smoothing_fwhm=6,
                mask_img='gm_mask.nii'):
    files = sorted(glob.glob(os.path.join(
        subject_dir, 'rfMRI_REST?_??/rfMRI_REST?_??.nii.gz')))

    confounds = get_confounds(subject_dir, files, mask_img=mask_img)

    multi_pca = MultiPCA(mask=mask_img, smoothing_fwhm=smoothing_fwhm,
                         t_r=.7, low_pass=.1,
                         n_components=n_components, do_cca=False,
                         n_jobs=N_JOBS, verbose=12)
    multi_pca.fit(files, confounds=confounds)
    return multi_pca.components_ * multi_pca.variance_[:, np.newaxis]
Exemple #3
0
def test_with_globbing_patterns_with_single_image():
    # With single image
    data_4d = np.zeros((40, 40, 40, 3))
    data_4d[20, 20, 20] = 1
    img_4d = nibabel.Nifti1Image(data_4d, affine=np.eye(4))
    multi_pca = MultiPCA(n_components=3)

    with write_tmp_imgs(img_4d, create_files=True, use_wildcards=True) as img:
        input_image = _tmp_dir() + img
        multi_pca.fit(input_image)
        components_img = multi_pca.components_img_
        assert_true(isinstance(components_img, nibabel.Nifti1Image))
        # n_components = 3
        check_shape = img_4d.shape[:3] + (3, )
        assert_equal(components_img.shape, check_shape)
        assert_equal(len(components_img.shape), 4)
Exemple #4
0
def test_with_globbing_patterns_with_single_image():
    # With single image
    data_4d = np.zeros((40, 40, 40, 3))
    data_4d[20, 20, 20] = 1
    img_4d = nibabel.Nifti1Image(data_4d, affine=np.eye(4))
    multi_pca = MultiPCA(n_components=3)

    with write_tmp_imgs(img_4d, create_files=True, use_wildcards=True) as img:
        input_image = _tmp_dir() + img
        multi_pca.fit(input_image)
        components_img = multi_pca.components_img_
        assert_true(isinstance(components_img, nibabel.Nifti1Image))
        # n_components = 3
        check_shape = img_4d.shape[:3] + (3,)
        assert_equal(components_img.shape, check_shape)
        assert_equal(len(components_img.shape), 4)
Exemple #5
0
    def __init__(self,
                 method,
                 n_parcels=50,
                 random_state=0,
                 mask=None,
                 smoothing_fwhm=4.,
                 standardize=False,
                 detrend=False,
                 low_pass=None,
                 high_pass=None,
                 t_r=None,
                 target_affine=None,
                 target_shape=None,
                 mask_strategy='epi',
                 mask_args=None,
                 memory=Memory(cachedir=None),
                 memory_level=0,
                 n_jobs=1,
                 verbose=1):
        self.method = method
        self.n_parcels = n_parcels

        MultiPCA.__init__(self,
                          n_components=200,
                          random_state=random_state,
                          mask=mask,
                          memory=memory,
                          smoothing_fwhm=smoothing_fwhm,
                          standardize=standardize,
                          detrend=detrend,
                          low_pass=low_pass,
                          high_pass=high_pass,
                          t_r=t_r,
                          target_affine=target_affine,
                          target_shape=target_shape,
                          mask_strategy=mask_strategy,
                          mask_args=mask_args,
                          memory_level=memory_level,
                          n_jobs=n_jobs,
                          verbose=verbose)
    def __init__(self, algorithm, n_parcels=50, n_components=100,
                 linkage='ward', init='k-means++', connectivity=None,
                 random_state=0, mask=None, target_affine=None,
                 target_shape=None,
                 low_pass=None, high_pass=None, t_r=None,
                 smoothing_fwhm=None, standardize=False,
                 detrend=False, memory=Memory(cachedir=None),
                 memory_level=0, n_jobs=1, verbose=1,
                 shelve=False):
        self.algorithm = algorithm
        self.n_parcels = n_parcels
        self.linkage = linkage
        self.init = init
        self.connectivity = connectivity
        self.shelve = shelve

        MultiPCA.__init__(self, n_components=n_components,
                          random_state=random_state,
                          mask=mask, memory=memory,
                          memory_level=memory_level,
                          n_jobs=n_jobs,
                          verbose=verbose)
    def fit(self, imgs, y=None, confounds=None):
        """ Fit the clustering technique to fmri images
        Parameters
        ----------
        X : List of Niimg-like objects
            Data from which parcellations will be returned.
        """
        if self.algorithm is None:
            raise ValueError("Parcellation algorithm must be specified in "
                             "['minibatchkmeans', 'featureagglomeration'].")

        valid_algorithms = self.VALID_ALGORITHMS
        if self.algorithm not in valid_algorithms:
            raise ValueError("Invalid algorithm={0} is provided. Please one "
                             "among them {1}".format(self.algorithm,
                                                     valid_algorithms))

        if not hasattr(imgs, '__iter__'):
            imgs = [imgs]

        if isinstance(self.mask, (NiftiMasker, MultiNiftiMasker)):
            if self.memory is None and self.mask.memory is not None:
                self.memory = self.mask.memory

            if self.memory_level is None and \
                    self.mask.memory_level is not None:
                self.memory_level = self.mask.memory_level

            if self.n_jobs is None and self.mask.n_jobs is not None:
                self.n_jobs = self.mask.n_jobs

        MultiPCA.fit(self, imgs)

        if self.verbose:
            print("[Parcellations] Learning the data")
        self._fit_method(self.components_)

        return self
Exemple #8
0
def test_components_img():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    n_components = 3
    multi_pca = MultiPCA(mask=mask_img, n_components=n_components,
                         random_state=0)
    # fit to the data and test for components images
    multi_pca.fit(data)
    components_img = multi_pca.components_img_
    assert_true(isinstance(components_img, nibabel.Nifti1Image))
    check_shape = data[0].shape[:3] + (n_components,)
    assert_equal(components_img.shape, check_shape)
    assert_equal(len(components_img.shape), 4)
    def _raw_fit(self, data):

        group = self.group
        sub_num = self.sub_num

        if group:
            data = MultiPCA._raw_fit(self, data).T
        else:
            data = data.reshape((3, self.n_components, -1))
            data = data[sub_num - 1]

        # plt.plot(data[:, :3])
        # plt.tight_layout()
        # plt.show()
        self.hvmf_fit(data.T)
        return self
Exemple #10
0
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3)

    # Test that the components are the same if we put twice the same data
    components1 = multi_pca.fit(data).components_
    components2 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_almost_equal(components1, components2)

    # Smoke test fit with 'confounds' argument
    confounds = [np.arange(10).reshape(5, 2)] * 8
    multi_pca.fit(data, confounds=confounds)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    nose.tools.assert_raises(ValueError, multi_pca.fit, data[:2])

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)),
                         do_cca=False, n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))
Exemple #11
0
def test_multi_pca_score():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    imgs = []
    for i in range(8):
        this_img = rng.normal(size=shape)
        imgs.append(nibabel.Nifti1Image(this_img, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)

    # Assert that score is between zero and one
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs)
    s = multi_pca.score(imgs)
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))

    # Assert that score does not fail with single subject data
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_true(isinstance(s, float))
    assert (0. <= s <= 1.)

    # Assert that score is one for n_components == n_sample
    # in single subject configuration
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_almost_equal(s, 1., 1)

    # Per component score
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    masker = NiftiMasker(mask_img).fit()
    s = multi_pca._raw_score(masker.transform(imgs[0]), per_component=True)
    assert_equal(s.shape, (5, ))
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))
Exemple #12
0
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3, random_state=0)
    # fit to the data and test for masker attributes
    multi_pca.fit(data)
    assert_true(multi_pca.mask_img_ == mask_img)
    assert_true(multi_pca.mask_img_ == multi_pca.masker_.mask_img_)

    # Test that the components are the same if we put twice the same data, and
    # that fit output is deterministic
    components1 = multi_pca.components_
    components2 = multi_pca.fit(data).components_
    components3 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_equal(components1, components2)
    np.testing.assert_array_almost_equal(components1, components3)

    # Smoke test fit with 'confounds' argument
    confounds = [np.arange(10).reshape(5, 2)] * 8
    multi_pca.fit(data, confounds=confounds)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    assert_raises(ValueError, multi_pca.fit, data[:2])

    # Test fit on data with the use of a masker
    masker = MultiNiftiMasker()
    multi_pca = MultiPCA(mask=masker, n_components=3)
    multi_pca.fit(data)
    assert_true(multi_pca.mask_img_ == multi_pca.masker_.mask_img_)

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)),
                         do_cca=False,
                         n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))

    # Smoke test to fit with no img
    assert_raises(TypeError, multi_pca.fit)

    multi_pca = MultiPCA(mask=mask_img, n_components=3)
    assert_raises_regex(
        ValueError, "Object has no components_ attribute. "
        "This is probably because fit has not been called",
        multi_pca.transform, data)
    # Test if raises an error when empty list of provided.
    assert_raises_regex(
        ValueError, 'Need one or more Niimg-like objects as input, '
        'an empty list was given.', multi_pca.fit, [])
    # Test passing masker arguments to estimator
    multi_pca = MultiPCA(target_affine=affine,
                         target_shape=shape[:3],
                         n_components=3,
                         mask_strategy='background')
    multi_pca.fit(data)
def test_multi_pca_score():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    imgs = []
    for i in range(8):
        this_img = rng.normal(size=shape)
        imgs.append(nibabel.Nifti1Image(this_img, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)

    # Assert that score is between zero and one
    multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs)
    s = multi_pca.score(imgs)
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))

    # Assert that score does not fail with single subject data
    multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_true(isinstance(s, float))
    assert(0. <= s <= 1.)

    # Assert that score is one for n_components == n_sample
    # in single subject configuration
    multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_almost_equal(s, 1., 1)

    # Per component score
    multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    masker = NiftiMasker(mask_img).fit()
    s = multi_pca._raw_score(masker.transform(imgs[0]), per_component=True)
    assert_equal(s.shape, (5,))
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))
Exemple #14
0
    def _raw_fit(self, data):
        """ Fits the parcellation method on this reduced data.
        Data are coming from a base decomposition estimator which computes
        the mask and reduces the dimensionality of images using
        randomized_svd.
        Parameters
        ----------
        data : ndarray
            Shape (n_samples, n_features)
        Returns
        -------
        labels_ : numpy.ndarray
            Labels to each cluster in the brain.
        connectivity_ : numpy.ndarray
            voxel-to-voxel connectivity matrix computed from a mask.
            Note that, this attribute is returned only for selected methods
            such as 'ward', 'complete', 'average'.
        """
        valid_methods = self.VALID_METHODS
        if self.method is None:
            raise ValueError("Parcellation method is specified as None. "
                             "Please select one of the method in "
                             "{0}".format(valid_methods))
        if self.method is not None and self.method not in valid_methods:
            raise ValueError("The method you have selected is not implemented "
                             "'{0}'. Valid methods are in {1}".format(
                                 self.method, valid_methods))

        # we delay importing Ward or AgglomerativeClustering and same
        # time import plotting module before that.

        # Because sklearn.cluster imports scipy hierarchy and hierarchy imports
        # matplotlib. So, we force import matplotlib first using our
        # plotting to avoid backend display error with matplotlib
        # happening in Travis
        try:
            from nilearn import plotting
        except:
            pass

        components = MultiPCA._raw_fit(self, data)

        mask_img_ = self.masker_.mask_img_
        if self.verbose:
            print("[{0}] computing {1}".format(self.__class__.__name__,
                                               self.method))

        if self.method == 'kmeans':
            from sklearn.cluster import MiniBatchKMeans
            kmeans = MiniBatchKMeans(n_clusters=self.n_parcels,
                                     init='k-means++',
                                     random_state=self.random_state,
                                     verbose=max(0, self.verbose - 1))
            labels = self._cache(_estimator_fit,
                                 func_memory_level=1)(components.T, kmeans)
        else:
            mask_ = _safe_get_data(mask_img_).astype(np.bool)
            shape = mask_.shape
            connectivity = image.grid_to_graph(n_x=shape[0],
                                               n_y=shape[1],
                                               n_z=shape[2],
                                               mask=mask_)

            # from data.new_agglo import NewAgglomerativeClustering as AgglomerativeClustering
            from sklearn.cluster import AgglomerativeClustering

            agglomerative = AgglomerativeClustering(n_clusters=self.n_parcels,
                                                    connectivity=connectivity,
                                                    linkage=self.method,
                                                    memory=self.memory,
                                                    compute_full_tree=True)

            labels = self._cache(_estimator_fit,
                                 func_memory_level=1)(components.T,
                                                      agglomerative)

            self.agglomerative = agglomerative
            self.connectivity_ = connectivity
            # Avoid 0 label
            labels = labels + 1
            self.labels_img_ = self.masker_.inverse_transform(labels)
            return self

        # Avoid 0 label
        labels = labels + 1
        self.labels_img_ = self.masker_.inverse_transform(labels)

        return self
Exemple #15
0
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3,
                         random_state=0)
    # fit to the data and test for masker attributes
    multi_pca.fit(data)
    assert_true(multi_pca.mask_img_ == mask_img)
    assert_true(multi_pca.mask_img_ == multi_pca.masker_.mask_img_)

    # Test that the components are the same if we put twice the same data, and
    # that fit output is deterministic
    components1 = multi_pca.components_
    components2 = multi_pca.fit(data).components_
    components3 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_equal(components1, components2)
    np.testing.assert_array_almost_equal(components1, components3)

    # Smoke test fit with 'confounds' argument
    confounds = [np.arange(10).reshape(5, 2)] * 8
    multi_pca.fit(data, confounds=confounds)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    assert_raises(ValueError, multi_pca.fit, data[:2])

    # Test fit on data with the use of a masker
    masker = MultiNiftiMasker()
    multi_pca = MultiPCA(mask=masker, n_components=3)
    multi_pca.fit(data)
    assert_true(multi_pca.mask_img_ == multi_pca.masker_.mask_img_)

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)),
                         do_cca=False, n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))

    # Smoke test to fit with no img
    assert_raises(TypeError, multi_pca.fit)

    multi_pca = MultiPCA(mask=mask_img, n_components=3)
    assert_raises_regex(ValueError,
                        "Object has no components_ attribute. "
                        "This is probably because fit has not been called",
                        multi_pca.transform, data)
    # Test if raises an error when empty list of provided.
    assert_raises_regex(ValueError,
                        'Need one or more Niimg-like objects as input, '
                        'an empty list was given.',
                        multi_pca.fit, [])
    # Test passing masker arguments to estimator
    multi_pca = MultiPCA(target_affine=affine,
                         target_shape=shape[:3],
                         n_components=3,
                         mask_strategy='background')
    multi_pca.fit(data)