Exemple #1
0
def test_multi_pca_score():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    imgs = []
    for i in range(8):
        this_img = rng.normal(size=shape)
        imgs.append(nibabel.Nifti1Image(this_img, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)

    # Assert that score is between zero and one
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs)
    s = multi_pca.score(imgs)
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))

    # Assert that score does not fail with single subject data
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=3)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_true(isinstance(s, float))
    assert (0. <= s <= 1.)

    # Assert that score is one for n_components == n_sample
    # in single subject configuration
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    s = multi_pca.score(imgs[0])
    assert_almost_equal(s, 1., 1)

    # Per component score
    multi_pca = MultiPCA(mask=mask_img,
                         random_state=0,
                         memory_level=0,
                         n_components=5)
    multi_pca.fit(imgs[0])
    masker = NiftiMasker(mask_img).fit()
    s = multi_pca._raw_score(masker.transform(imgs[0]), per_component=True)
    assert_equal(s.shape, (5, ))
    assert_true(np.all(s <= 1))
    assert_true(np.all(0 <= s))
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3, random_state=0)

    # Test that the components are the same if we put twice the same data, and
    # that fit output is deterministic
    components1 = multi_pca.fit(data).components_
    components2 = multi_pca.fit(data).components_
    components3 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_equal(components1, components2)
    np.testing.assert_array_almost_equal(components1, components3)

    # Smoke test fit with 'confounds' argument
    confounds = [np.arange(10).reshape(5, 2)] * 8
    multi_pca.fit(data, confounds=confounds)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    assert_raises(ValueError, multi_pca.fit, data[:2])

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)),
                         do_cca=False,
                         n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))

    # Smoke test to fit with no img
    assert_raises(TypeError, multi_pca.fit)

    multi_pca = MultiPCA(mask=mask_img, n_components=3)
    assert_raises_regex(
        ValueError, "Object has no components_ attribute. "
        "This is probably because fit has not been called",
        multi_pca.transform, data)
Exemple #3
0
def test_components_img():
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    n_components = 3
    multi_pca = MultiPCA(mask=mask_img,
                         n_components=n_components,
                         random_state=0)
    # fit to the data and test for components images
    multi_pca.fit(data)
    components_img = multi_pca.components_img_
    assert_true(isinstance(components_img, nibabel.Nifti1Image))
    check_shape = data[0].shape[:3] + (n_components, )
    assert_equal(components_img.shape, check_shape)
    assert_equal(len(components_img.shape), 4)
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3)

    # Test that the components are the same if we put twice the same data
    components1 = multi_pca.fit(data).components_
    components2 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_almost_equal(components1, components2)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    nose.tools.assert_raises(ValueError, multi_pca.fit, data[:2])

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_opening=0),
                         do_cca=False,
                         n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))
Exemple #5
0
def test_with_globbing_patterns_with_single_image():
    # With single image
    data_4d = np.zeros((40, 40, 40, 3))
    data_4d[20, 20, 20] = 1
    img_4d = nibabel.Nifti1Image(data_4d, affine=np.eye(4))
    multi_pca = MultiPCA(n_components=3)

    with write_tmp_imgs(img_4d, create_files=True, use_wildcards=True) as img:
        input_image = _tmp_dir() + img
        multi_pca.fit(input_image)
        components_img = multi_pca.components_img_
        assert_true(isinstance(components_img, nibabel.Nifti1Image))
        # n_components = 3
        check_shape = img_4d.shape[:3] + (3, )
        assert_equal(components_img.shape, check_shape)
        assert_equal(len(components_img.shape), 4)
Exemple #6
0
def test_multi_pca():
    # Smoke test the MultiPCA
    # XXX: this is mostly a smoke test
    shape = (6, 8, 10, 5)
    affine = np.eye(4)
    rng = np.random.RandomState(0)

    # Create a "multi-subject" dataset
    data = []
    for i in range(8):
        this_data = rng.normal(size=shape)
        # Create fake activation to get non empty mask
        this_data[2:4, 2:4, 2:4, :] += 10
        data.append(nibabel.Nifti1Image(this_data, affine))

    mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine)
    multi_pca = MultiPCA(mask=mask_img, n_components=3,
                         random_state=0)
    # fit to the data and test for masker attributes
    multi_pca.fit(data)
    assert multi_pca.mask_img_ == mask_img
    assert multi_pca.mask_img_ == multi_pca.masker_.mask_img_

    # Test that the components are the same if we put twice the same data, and
    # that fit output is deterministic
    components1 = multi_pca.components_
    components2 = multi_pca.fit(data).components_
    components3 = multi_pca.fit(2 * data).components_
    np.testing.assert_array_equal(components1, components2)
    np.testing.assert_array_almost_equal(components1, components3)

    # Smoke test fit with 'confounds' argument
    confounds = [np.arange(10).reshape(5, 2)] * 8
    multi_pca.fit(data, confounds=confounds)

    # Smoke test that multi_pca also works with single subject data
    multi_pca.fit(data[0])

    # Check that asking for too little components raises a ValueError
    multi_pca = MultiPCA()
    pytest.raises(ValueError, multi_pca.fit, data[:2])

    # Test fit on data with the use of a masker
    masker = MultiNiftiMasker()
    multi_pca = MultiPCA(mask=masker, n_components=3)
    multi_pca.fit(data)
    assert multi_pca.mask_img_ == multi_pca.masker_.mask_img_

    # Smoke test the use of a masker and without CCA
    multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)),
                         do_cca=False, n_components=3)
    multi_pca.fit(data[:2])

    # Smoke test the transform and inverse_transform
    multi_pca.inverse_transform(multi_pca.transform(data[-2:]))

    # Smoke test to fit with no img
    pytest.raises(TypeError, multi_pca.fit)

    multi_pca = MultiPCA(mask=mask_img, n_components=3)
    with pytest.raises(ValueError,
                       match="Object has no components_ attribute. This is "
                             "probably because fit has not been called"):
        multi_pca.transform(data)
    # Test if raises an error when empty list of provided.
    with pytest.raises(ValueError,
                       match='Need one or more Niimg-like objects as input, '
                             'an empty list was given.'):
        multi_pca.fit([])
    # Test passing masker arguments to estimator
    multi_pca = MultiPCA(target_affine=affine,
                         target_shape=shape[:3],
                         n_components=3,
                         mask_strategy='background')
    multi_pca.fit(data)