def test_multi_pca_score(): shape = (6, 8, 10, 5) affine = np.eye(4) rng = np.random.RandomState(0) # Create a "multi-subject" dataset imgs = [] for i in range(8): this_img = rng.normal(size=shape) imgs.append(nibabel.Nifti1Image(this_img, affine)) mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine) # Assert that score is between zero and one multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0, n_components=3) multi_pca.fit(imgs) s = multi_pca.score(imgs) assert_true(np.all(s <= 1)) assert_true(np.all(0 <= s)) # Assert that score does not fail with single subject data multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0, n_components=3) multi_pca.fit(imgs[0]) s = multi_pca.score(imgs[0]) assert_true(isinstance(s, float)) assert (0. <= s <= 1.) # Assert that score is one for n_components == n_sample # in single subject configuration multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0, n_components=5) multi_pca.fit(imgs[0]) s = multi_pca.score(imgs[0]) assert_almost_equal(s, 1., 1) # Per component score multi_pca = MultiPCA(mask=mask_img, random_state=0, memory_level=0, n_components=5) multi_pca.fit(imgs[0]) masker = NiftiMasker(mask_img).fit() s = multi_pca._raw_score(masker.transform(imgs[0]), per_component=True) assert_equal(s.shape, (5, )) assert_true(np.all(s <= 1)) assert_true(np.all(0 <= s))
def test_multi_pca(): # Smoke test the MultiPCA # XXX: this is mostly a smoke test shape = (6, 8, 10, 5) affine = np.eye(4) rng = np.random.RandomState(0) # Create a "multi-subject" dataset data = [] for i in range(8): this_data = rng.normal(size=shape) # Create fake activation to get non empty mask this_data[2:4, 2:4, 2:4, :] += 10 data.append(nibabel.Nifti1Image(this_data, affine)) mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine) multi_pca = MultiPCA(mask=mask_img, n_components=3, random_state=0) # Test that the components are the same if we put twice the same data, and # that fit output is deterministic components1 = multi_pca.fit(data).components_ components2 = multi_pca.fit(data).components_ components3 = multi_pca.fit(2 * data).components_ np.testing.assert_array_equal(components1, components2) np.testing.assert_array_almost_equal(components1, components3) # Smoke test fit with 'confounds' argument confounds = [np.arange(10).reshape(5, 2)] * 8 multi_pca.fit(data, confounds=confounds) # Smoke test that multi_pca also works with single subject data multi_pca.fit(data[0]) # Check that asking for too little components raises a ValueError multi_pca = MultiPCA() assert_raises(ValueError, multi_pca.fit, data[:2]) # Smoke test the use of a masker and without CCA multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)), do_cca=False, n_components=3) multi_pca.fit(data[:2]) # Smoke test the transform and inverse_transform multi_pca.inverse_transform(multi_pca.transform(data[-2:])) # Smoke test to fit with no img assert_raises(TypeError, multi_pca.fit) multi_pca = MultiPCA(mask=mask_img, n_components=3) assert_raises_regex( ValueError, "Object has no components_ attribute. " "This is probably because fit has not been called", multi_pca.transform, data)
def test_components_img(): shape = (6, 8, 10, 5) affine = np.eye(4) rng = np.random.RandomState(0) # Create a "multi-subject" dataset data = [] for i in range(8): this_data = rng.normal(size=shape) # Create fake activation to get non empty mask this_data[2:4, 2:4, 2:4, :] += 10 data.append(nibabel.Nifti1Image(this_data, affine)) mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine) n_components = 3 multi_pca = MultiPCA(mask=mask_img, n_components=n_components, random_state=0) # fit to the data and test for components images multi_pca.fit(data) components_img = multi_pca.components_img_ assert_true(isinstance(components_img, nibabel.Nifti1Image)) check_shape = data[0].shape[:3] + (n_components, ) assert_equal(components_img.shape, check_shape) assert_equal(len(components_img.shape), 4)
def test_multi_pca(): # Smoke test the MultiPCA # XXX: this is mostly a smoke test shape = (6, 8, 10, 5) affine = np.eye(4) rng = np.random.RandomState(0) # Create a "multi-subject" dataset data = [] for i in range(8): this_data = rng.normal(size=shape) # Create fake activation to get non empty mask this_data[2:4, 2:4, 2:4, :] += 10 data.append(nibabel.Nifti1Image(this_data, affine)) mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine) multi_pca = MultiPCA(mask=mask_img, n_components=3) # Test that the components are the same if we put twice the same data components1 = multi_pca.fit(data).components_ components2 = multi_pca.fit(2 * data).components_ np.testing.assert_array_almost_equal(components1, components2) # Smoke test that multi_pca also works with single subject data multi_pca.fit(data[0]) # Check that asking for too little components raises a ValueError multi_pca = MultiPCA() nose.tools.assert_raises(ValueError, multi_pca.fit, data[:2]) # Smoke test the use of a masker and without CCA multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_opening=0), do_cca=False, n_components=3) multi_pca.fit(data[:2]) # Smoke test the transform and inverse_transform multi_pca.inverse_transform(multi_pca.transform(data[-2:]))
def test_with_globbing_patterns_with_single_image(): # With single image data_4d = np.zeros((40, 40, 40, 3)) data_4d[20, 20, 20] = 1 img_4d = nibabel.Nifti1Image(data_4d, affine=np.eye(4)) multi_pca = MultiPCA(n_components=3) with write_tmp_imgs(img_4d, create_files=True, use_wildcards=True) as img: input_image = _tmp_dir() + img multi_pca.fit(input_image) components_img = multi_pca.components_img_ assert_true(isinstance(components_img, nibabel.Nifti1Image)) # n_components = 3 check_shape = img_4d.shape[:3] + (3, ) assert_equal(components_img.shape, check_shape) assert_equal(len(components_img.shape), 4)
def test_multi_pca(): # Smoke test the MultiPCA # XXX: this is mostly a smoke test shape = (6, 8, 10, 5) affine = np.eye(4) rng = np.random.RandomState(0) # Create a "multi-subject" dataset data = [] for i in range(8): this_data = rng.normal(size=shape) # Create fake activation to get non empty mask this_data[2:4, 2:4, 2:4, :] += 10 data.append(nibabel.Nifti1Image(this_data, affine)) mask_img = nibabel.Nifti1Image(np.ones(shape[:3], dtype=np.int8), affine) multi_pca = MultiPCA(mask=mask_img, n_components=3, random_state=0) # fit to the data and test for masker attributes multi_pca.fit(data) assert multi_pca.mask_img_ == mask_img assert multi_pca.mask_img_ == multi_pca.masker_.mask_img_ # Test that the components are the same if we put twice the same data, and # that fit output is deterministic components1 = multi_pca.components_ components2 = multi_pca.fit(data).components_ components3 = multi_pca.fit(2 * data).components_ np.testing.assert_array_equal(components1, components2) np.testing.assert_array_almost_equal(components1, components3) # Smoke test fit with 'confounds' argument confounds = [np.arange(10).reshape(5, 2)] * 8 multi_pca.fit(data, confounds=confounds) # Smoke test that multi_pca also works with single subject data multi_pca.fit(data[0]) # Check that asking for too little components raises a ValueError multi_pca = MultiPCA() pytest.raises(ValueError, multi_pca.fit, data[:2]) # Test fit on data with the use of a masker masker = MultiNiftiMasker() multi_pca = MultiPCA(mask=masker, n_components=3) multi_pca.fit(data) assert multi_pca.mask_img_ == multi_pca.masker_.mask_img_ # Smoke test the use of a masker and without CCA multi_pca = MultiPCA(mask=MultiNiftiMasker(mask_args=dict(opening=0)), do_cca=False, n_components=3) multi_pca.fit(data[:2]) # Smoke test the transform and inverse_transform multi_pca.inverse_transform(multi_pca.transform(data[-2:])) # Smoke test to fit with no img pytest.raises(TypeError, multi_pca.fit) multi_pca = MultiPCA(mask=mask_img, n_components=3) with pytest.raises(ValueError, match="Object has no components_ attribute. This is " "probably because fit has not been called"): multi_pca.transform(data) # Test if raises an error when empty list of provided. with pytest.raises(ValueError, match='Need one or more Niimg-like objects as input, ' 'an empty list was given.'): multi_pca.fit([]) # Test passing masker arguments to estimator multi_pca = MultiPCA(target_affine=affine, target_shape=shape[:3], n_components=3, mask_strategy='background') multi_pca.fit(data)