Exemple #1
0
def init_enhance_and_skullstrip_bold_wf(name='enhance_and_skullstrip_bold_wf',
                                        omp_nthreads=1):
    """
    This workflow takes in a BOLD volume, and attempts to enhance the contrast
    between gray and white matter, and skull-stripping the result.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf
        wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1)


    Inputs

        in_file
            BOLD image (single volume)


    Outputs

        bias_corrected_file
            the ``in_file`` after `N4BiasFieldCorrection`_
        skull_stripped_file
            the ``bias_corrected_file`` after skull-stripping
        mask_file
            mask of the skull-stripped input file
        out_report
            reportlet for the skull-stripping

    .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053
    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'mask_file', 'skull_stripped_file', 'bias_corrected_file', 'out_report'
    ]),
                         name='outputnode')
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3,
                                                    copy_header=True),
                         name='n4_correct',
                         n_procs=omp_nthreads)
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    unifize = pe.Node(afni.Unifize(t2=True,
                                   outputtype='NIFTI_GZ',
                                   args='-clfrac 0.4',
                                   out_file="uni.nii.gz"),
                      name='unifize')
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')
    apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask')
    copy_xform = pe.Node(CopyXForm(),
                         name='copy_xform',
                         mem_gb=0.1,
                         run_without_submitting=True)
    mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')

    workflow.connect([
        (inputnode, n4_correct, [('in_file', 'input_image')]),
        (inputnode, copy_xform, [('in_file', 'hdr_file')]),
        (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]),
        (skullstrip_first_pass, unifize, [('out_file', 'in_file')]),
        (unifize, skullstrip_second_pass, [('out_file', 'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, combine_masks, [('out_file', 'operand_file')
                                                 ]),
        (unifize, apply_mask, [('out_file', 'in_file')]),
        (combine_masks, apply_mask, [('out_file', 'mask_file')]),
        (n4_correct, mask_reportlet, [('output_image', 'background_file')]),
        (combine_masks, mask_reportlet, [('out_file', 'mask_file')]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        (mask_reportlet, outputnode, [('out_report', 'out_report')]),
        (apply_mask, copy_xform, [('out_file', 'in_file')]),
        (copy_xform, outputnode, [('out_file', 'skull_stripped_file')]),
        (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]),
    ])

    return workflow
Exemple #2
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    Create a workflow for :abbr:`STC (slice-timing correction)`.

    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold import init_bold_stc_wf
            wf = init_bold_stc_wf(
                metadata={"RepetitionTime": 2.0,
                          "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
                )

    Parameters
    ----------
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    name : :obj:`str`
        Name of workflow (default: ``bold_stc_wf``)

    Inputs
    ------
    bold_file
        BOLD series NIfTI file
    skip_vols
        Number of non-steady-state volumes detected at beginning of ``bold_file``

    Outputs
    -------
    stc_file
        Slice-timing corrected BOLD series NIfTI file

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.utils import CopyXForm

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
BOLD runs were slice-time corrected using `3dTshift` from
AFNI {afni_ver} [@afni, RRID:SCR_005927].
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'skip_vols']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']),
                         name='outputnode')

    LOGGER.log(25, 'Slice-timing correction will be included.')

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(afni.TShift(
        outputtype='NIFTI_GZ',
        tr='{}s'.format(metadata["RepetitionTime"]),
        slice_timing=metadata['SliceTiming'],
        slice_encoding_direction=metadata.get('SliceEncodingDirection', 'k')),
                                      name='slice_timing_correction')

    copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1)

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (slice_timing_correction, copy_xform, [('out_file', 'in_file')]),
        (inputnode, copy_xform, [('bold_file', 'hdr_file')]),
        (copy_xform, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow
Exemple #3
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_stc_wf
        wf = init_bold_stc_wf(
            metadata={"RepetitionTime": 2.0,
                      "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
            )

    **Parameters**

        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_stc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``

    **Outputs**

        stc_file
            Slice-timing corrected BOLD series NIfTI file

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'skip_vols']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']),
                         name='outputnode')

    LOGGER.log(25, 'Slice-timing correction will be included.')

    def create_custom_slice_timing_file_func(metadata):
        import os
        slice_timings_sec = ["%f" % t for t in metadata["SliceTiming"]]
        out_file = os.path.abspath("timings.1D")
        with open(out_file, "w") as fp:
            fp.write("\t".join(slice_timings_sec))
        return out_file

    create_custom_slice_timing_file = pe.Node(
        niu.Function(function=create_custom_slice_timing_file_func),
        name="create_custom_slice_timing_file",
        mem_gb=DEFAULT_MEMORY_MIN_GB)
    create_custom_slice_timing_file.inputs.metadata = metadata

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(afni.TShift(
        outputtype='NIFTI_GZ', tr='{}s'.format(metadata["RepetitionTime"])),
                                      name='slice_timing_correction')

    copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1)

    def _prefix_at(x):
        return "@%s" % x

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (create_custom_slice_timing_file, slice_timing_correction,
         [(('out', _prefix_at), 'tpattern')]),
        (slice_timing_correction, copy_xform, [('out_file', 'in_file')]),
        (inputnode, copy_xform, [('bold_file', 'hdr_file')]),
        (copy_xform, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow
Exemple #4
0
def init_enhance_and_skullstrip_bold_wf(
        name='enhance_and_skullstrip_bold_wf',
        pre_mask=False,
        omp_nthreads=1):
    """
    This workflow takes in a :abbr:`BOLD (blood-oxygen level-dependant)`
    :abbr:`fMRI (functional MRI)` average/summary (e.g. a reference image
    averaging non-steady-state timepoints), and sharpens the histogram
    with the application of the N4 algorithm for removing the
    :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal
    mask.

    Steps of this workflow are:

      1. Calculate a tentative mask by registering (9-parameters) to *fMRIPrep*'s
         :abbr:`EPI (echo-planar imaging)` -*boldref* template, which
         is in MNI space.
         The tentative mask is obtained by resampling the MNI template's
         brainmask into *boldref*-space.
      2. Binary dilation of the tentative mask with a sphere of 3mm diameter.
      3. Run ANTs' ``N4BiasFieldCorrection`` on the input
         :abbr:`BOLD (blood-oxygen level-dependant)` average, using the
         mask generated in 1) instead of the internal Otsu thresholding.
      4. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology
         dilation of one iteration and a sphere of 6mm as structuring element.
      5. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image
         with the latest mask calculated in 3), then use AFNI's ``3dUnifize``
         to *standardize* the T2* contrast distribution.
      6. Calculate a mask using AFNI's ``3dAutomask`` after the contrast
         enhancement of 4).
      7. Calculate a final mask as the intersection of 4) and 6).
      8. Apply final mask on the enhanced reference.

    Step 1 can be skipped if the ``pre_mask`` argument is set to ``True`` and
    a tentative mask is passed in to the workflow throught the ``pre_mask``
    Nipype input.


    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf
        wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1)

    **Parameters**
        name : str
            Name of workflow (default: ``enhance_and_skullstrip_bold_wf``)
        pre_mask : bool
            Indicates whether the ``pre_mask`` input will be set (and thus, step 1
            should be skipped).
        omp_nthreads : int
            number of threads available to parallel nodes

    **Inputs**

        in_file
            BOLD image (single volume)
        pre_mask : bool
            A tentative brain mask to initialize the workflow (requires ``pre_mask``
            parameter set ``True``).


    **Outputs**

        bias_corrected_file
            the ``in_file`` after `N4BiasFieldCorrection`_
        skull_stripped_file
            the ``bias_corrected_file`` after skull-stripping
        mask_file
            mask of the skull-stripped input file
        out_report
            reportlet for the skull-stripping

    .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053
    """
    workflow = Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'pre_mask']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'mask_file', 'skull_stripped_file', 'bias_corrected_file']), name='outputnode')

    # Dilate pre_mask
    pre_dilate = pe.Node(fsl.DilateImage(
        operation='max', kernel_shape='sphere', kernel_size=3.0,
        internal_datatype='char'), name='pre_mask_dilate')

    # Ensure mask's header matches reference's
    check_hdr = pe.Node(MatchHeader(), name='check_hdr',
                        run_without_submitting=True)

    # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1)
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                         name='n4_correct', n_procs=1)

    # Create a generous BET mask out of the bias-corrected EPI
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    bet_dilate = pe.Node(fsl.DilateImage(
        operation='max', kernel_shape='sphere', kernel_size=6.0,
        internal_datatype='char'), name='skullstrip_first_dilate')
    bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask')

    # Use AFNI's unifize for T2 constrast & fix header
    unifize = pe.Node(afni.Unifize(
        t2=True, outputtype='NIFTI_GZ',
        # Default -clfrac is 0.1, 0.4 was too conservative
        # -rbt because I'm a Jedi AFNI Master (see 3dUnifize's documentation)
        args='-clfrac 0.2 -rbt 18.3 65.0 90.0',
        out_file="uni.nii.gz"), name='unifize')
    fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1)

    # Run ANFI's 3dAutomask to extract a refined brain mask
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    fixhdr_skullstrip2 = pe.Node(CopyXForm(), name='fixhdr_skullstrip2', mem_gb=0.1)

    # Take intersection of both masks
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')

    # Compute masked brain
    apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask')

    if not pre_mask:
        bold_template = get_template('MNI152NLin2009cAsym', 'res-02_desc-fMRIPrep_boldref.nii.gz')
        brain_mask = get_template('MNI152NLin2009cAsym', 'res-02_desc-brain_mask.nii.gz')

        # Initialize transforms with antsAI
        init_aff = pe.Node(AI(
            fixed_image=str(bold_template),
            fixed_image_mask=str(brain_mask),
            metric=('Mattes', 32, 'Regular', 0.2),
            transform=('Affine', 0.1),
            search_factor=(20, 0.12),
            principal_axes=False,
            convergence=(10, 1e-6, 10),
            verbose=True),
            name='init_aff',
            n_procs=omp_nthreads)

        # Registration().version may be None
        if parseversion(Registration().version or '0.0.0') > Version('2.2.0'):
            init_aff.inputs.search_grid = (40, (0, 40, 40))

        # Set up spatial normalization
        norm = pe.Node(Registration(
            from_file=pkgr_fn(
                'fmriprep.data',
                'epi_atlasbased_brainmask.json')),
            name='norm',
            n_procs=omp_nthreads)
        norm.inputs.fixed_image = str(bold_template)
        map_brainmask = pe.Node(
            ApplyTransforms(interpolation='MultiLabel', float=True, input_image=str(brain_mask)),
            name='map_brainmask'
        )
        workflow.connect([
            (inputnode, init_aff, [('in_file', 'moving_image')]),
            (inputnode, map_brainmask, [('in_file', 'reference_image')]),
            (inputnode, norm, [('in_file', 'moving_image')]),
            (init_aff, norm, [('output_transform', 'initial_moving_transform')]),
            (norm, map_brainmask, [
                ('reverse_invert_flags', 'invert_transform_flags'),
                ('reverse_transforms', 'transforms')]),
            (map_brainmask, pre_dilate, [('output_image', 'in_file')]),
        ])
    else:
        workflow.connect([
            (inputnode, pre_dilate, [('pre_mask', 'in_file')]),
        ])

    workflow.connect([
        (inputnode, check_hdr, [('in_file', 'reference')]),
        (pre_dilate, check_hdr, [('out_file', 'in_file')]),
        (check_hdr, n4_correct, [('out_file', 'mask_image')]),
        (inputnode, n4_correct, [('in_file', 'input_image')]),
        (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]),
        (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]),
        (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]),
        (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]),
        (bet_dilate, bet_mask, [('out_file', 'mask_file')]),
        (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]),
        (bet_mask, unifize, [('out_file', 'in_file')]),
        (unifize, fixhdr_unifize, [('out_file', 'in_file')]),
        (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file')]),
        (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]),
        (fixhdr_unifize, apply_mask, [('out_file', 'in_file')]),
        (combine_masks, apply_mask, [('out_file', 'mask_file')]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]),
        (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]),
    ])

    return workflow
Exemple #5
0
def init_enhance_and_skullstrip_bold_wf(name='enhance_and_skullstrip_bold_wf',
                                        omp_nthreads=1,
                                        enhance_t2=False):
    """
    This workflow takes in a :abbr:`BOLD (blood-oxygen level-dependant)`
    :abbr:`fMRI (functional MRI)` average/summary (e.g. a reference image
    averaging non-steady-state timepoints), and sharpens the histogram
    with the application of the N4 algorithm for removing the
    :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal
    mask.

    Steps of this workflow are:


      1. Calculate a conservative mask using Nilearn's ``create_epi_mask``.
      2. Run ANTs' ``N4BiasFieldCorrection`` on the input
         :abbr:`BOLD (blood-oxygen level-dependant)` average, using the
         mask generated in 1) instead of the internal Otsu thresholding.
      3. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology
         dilation of one iteration and a sphere of 6mm as structuring element.
      4. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image
         with the latest mask calculated in 3), then use AFNI's ``3dUnifize``
         to *standardize* the T2* contrast distribution.
      5. Calculate a mask using AFNI's ``3dAutomask`` after the contrast
         enhancement of 4).
      6. Calculate a final mask as the intersection of 3) and 5).
      7. Apply final mask on the enhanced reference.



    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf
        wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1)

    **Parameters**
        name : str
            Name of workflow (default: ``enhance_and_skullstrip_bold_wf``)
        omp_nthreads : int
            number of threads available to parallel nodes
        enhance_t2 : bool
            perform logarithmic transform of input BOLD image to improve contrast
            before calculating the preliminary mask


    **Inputs**

        in_file
            BOLD image (single volume)


    **Outputs**

        bias_corrected_file
            the ``in_file`` after `N4BiasFieldCorrection`_
        skull_stripped_file
            the ``bias_corrected_file`` after skull-stripping
        mask_file
            mask of the skull-stripped input file
        out_report
            reportlet for the skull-stripping

    .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053
    """
    workflow = Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['mask_file', 'skull_stripped_file', 'bias_corrected_file']),
                         name='outputnode')

    # Create a loose mask to avoid N4 internal's Otsu mask
    n4_mask = pe.Node(MaskEPI(upper_cutoff=0.75,
                              enhance_t2=enhance_t2,
                              opening=1,
                              no_sanitize=True),
                      name='n4_mask')

    # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1)
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3,
                                                    copy_header=True),
                         name='n4_correct',
                         n_procs=1)

    # Create a generous BET mask out of the bias-corrected EPI
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    bet_dilate = pe.Node(fsl.DilateImage(operation='max',
                                         kernel_shape='sphere',
                                         kernel_size=6.0,
                                         internal_datatype='char'),
                         name='skullstrip_first_dilate')
    bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask')

    # Use AFNI's unifize for T2 constrast & fix header
    unifize = pe.Node(
        afni.Unifize(
            t2=True,
            outputtype='NIFTI_GZ',
            # Default -clfrac is 0.1, 0.4 was too conservative
            # -rbt because I'm a Jedi AFNI Master (see 3dUnifize's documentation)
            args='-clfrac 0.2 -rbt 18.3 65.0 90.0',
            out_file="uni.nii.gz"),
        name='unifize')
    fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1)

    # Run ANFI's 3dAutomask to extract a refined brain mask
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    fixhdr_skullstrip2 = pe.Node(CopyXForm(),
                                 name='fixhdr_skullstrip2',
                                 mem_gb=0.1)

    # Take intersection of both masks
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')

    # Compute masked brain
    apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask')

    workflow.connect([
        (inputnode, n4_mask, [('in_file', 'in_files')]),
        (inputnode, n4_correct, [('in_file', 'input_image')]),
        (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]),
        (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]),
        (n4_mask, n4_correct, [('out_mask', 'mask_image')]),
        (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]),
        (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]),
        (bet_dilate, bet_mask, [('out_file', 'mask_file')]),
        (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]),
        (bet_mask, unifize, [('out_file', 'in_file')]),
        (unifize, fixhdr_unifize, [('out_file', 'in_file')]),
        (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file')
                                                      ]),
        (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]),
        (fixhdr_unifize, apply_mask, [('out_file', 'in_file')]),
        (combine_masks, apply_mask, [('out_file', 'mask_file')]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]),
        (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]),
    ])

    return workflow
Exemple #6
0
def init_enhance_and_skullstrip_dwi_wf(name='enhance_and_skullstrip_dwi_wf',
                                       omp_nthreads=1):
    """
    Enhance a *b0* reference and perform brain extraction.

    This workflow takes in a *b0* reference image and sharpens the histogram
    with the application of the N4 algorithm for removing the
    :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal
    mask.

    Steps of this workflow are:

      1. Run ANTs' ``N4BiasFieldCorrection`` on the input
         dwi reference image and mask.
      2. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology
         dilation of one iteration and a sphere of 6mm as structuring element.
      3. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image
         with the latest mask calculated in 3), then use AFNI's ``3dUnifize``
         to *standardize* the T2* contrast distribution.
      4. Calculate a mask using AFNI's ``3dAutomask`` after the contrast
         enhancement of 4).
      5. Calculate a final mask as the intersection of 2) and 4).
      6. Apply final mask on the enhanced reference.

    Workflow Graph:
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from dmriprep.workflows.dwi.util import init_enhance_and_skullstrip_dwi_wf
            wf = init_enhance_and_skullstrip_dwi_wf(omp_nthreads=1)

    .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053

    Parameters
    ----------
    name : str
        Name of workflow (default: ``enhance_and_skullstrip_dwi_wf``)
    omp_nthreads : int
        number of threads available to parallel nodes

    Inputs
    ------
    in_file
        The *b0* reference (single volume)
    pre_mask
        initial mask

    Outputs
    -------
    bias_corrected_file
        the ``in_file`` after `N4BiasFieldCorrection`_
    skull_stripped_file
        the ``bias_corrected_file`` after skull-stripping
    mask_file
        mask of the skull-stripped input file
    out_report
        reportlet for the skull-stripping

    """
    workflow = Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'pre_mask']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['mask_file', 'skull_stripped_file', 'bias_corrected_file']),
                         name='outputnode')

    # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1)
    n4_correct = pe.Node(N4BiasFieldCorrection(dimension=3,
                                               copy_header=True,
                                               bspline_fitting_distance=200),
                         shrink_factor=2,
                         name='n4_correct',
                         n_procs=1)
    n4_correct.inputs.rescale_intensities = True

    # Create a generous BET mask out of the bias-corrected EPI
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    bet_dilate = pe.Node(fsl.DilateImage(operation='max',
                                         kernel_shape='sphere',
                                         kernel_size=6.0,
                                         internal_datatype='char'),
                         name='skullstrip_first_dilate')
    bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask')

    # Use AFNI's unifize for T2 contrast & fix header
    unifize = pe.Node(afni.Unifize(t2=True,
                                   outputtype='NIFTI_GZ',
                                   args='-clfrac 0.2 -rbt 18.3 65.0 90.0',
                                   out_file='uni.nii.gz'),
                      name='unifize')
    fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1)

    # Run AFNI's 3dAutomask to extract a refined brain mask
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    fixhdr_skullstrip2 = pe.Node(CopyXForm(),
                                 name='fixhdr_skullstrip2',
                                 mem_gb=0.1)

    # Take intersection of both masks
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')

    normalize = pe.Node(niu.Function(function=_normalize), name="normalize")

    # Compute masked brain
    apply_mask = pe.Node(ApplyMask(), name='apply_mask')

    workflow.connect([
        (inputnode, n4_correct, [('in_file', 'input_image'),
                                 ('pre_mask', 'mask_image')]),
        (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]),
        (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]),
        (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]),
        (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]),
        (bet_dilate, bet_mask, [('out_file', 'mask_file')]),
        (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]),
        (bet_mask, unifize, [('out_file', 'in_file')]),
        (unifize, fixhdr_unifize, [('out_file', 'in_file')]),
        (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file')
                                                      ]),
        (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]),
        (combine_masks, apply_mask, [('out_file', 'in_mask')]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        (n4_correct, normalize, [('output_image', 'in_file')]),
        (normalize, apply_mask, [('out', 'in_file')]),
        (normalize, outputnode, [('out', 'bias_corrected_file')]),
        (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]),
    ])

    return workflow
Exemple #7
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_stc_wf
        wf = init_bold_stc_wf(
            metadata={"RepetitionTime": 2.0,
                      "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
            )

    **Parameters**

        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_stc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``

    **Outputs**

        stc_file
            Slice-timing corrected BOLD series NIfTI file

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
BOLD runs were slice-time corrected using `3dTshift` from
AFNI {afni_ver} [@afni, RRID:SCR_005927].
""".format(afni_ver=''.join(list(afni.TShift().version or '<ver>')))
    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'skip_vols']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']), name='outputnode')

    LOGGER.log(25, 'Slice-timing correction will be included.')

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(
        afni.TShift(outputtype='NIFTI_GZ',
                    tr='{}s'.format(metadata["RepetitionTime"]),
                    slice_timing=metadata['SliceTiming']),
        name='slice_timing_correction')

    copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1)

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (slice_timing_correction, copy_xform, [('out_file', 'in_file')]),
        (inputnode, copy_xform, [('bold_file', 'hdr_file')]),
        (copy_xform, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow