def init_enhance_and_skullstrip_bold_wf(name='enhance_and_skullstrip_bold_wf', omp_nthreads=1): """ This workflow takes in a BOLD volume, and attempts to enhance the contrast between gray and white matter, and skull-stripping the result. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1) Inputs in_file BOLD image (single volume) Outputs bias_corrected_file the ``in_file`` after `N4BiasFieldCorrection`_ skull_stripped_file the ``bias_corrected_file`` after skull-stripping mask_file mask of the skull-stripped input file out_report reportlet for the skull-stripping .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053 """ workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'mask_file', 'skull_stripped_file', 'bias_corrected_file', 'out_report' ]), name='outputnode') n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4_correct', n_procs=omp_nthreads) skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True), name='skullstrip_first_pass') unifize = pe.Node(afni.Unifize(t2=True, outputtype='NIFTI_GZ', args='-clfrac 0.4', out_file="uni.nii.gz"), name='unifize') skullstrip_second_pass = pe.Node(afni.Automask(dilate=1, outputtype='NIFTI_GZ'), name='skullstrip_second_pass') combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'), name='combine_masks') apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask') copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1, run_without_submitting=True) mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet') workflow.connect([ (inputnode, n4_correct, [('in_file', 'input_image')]), (inputnode, copy_xform, [('in_file', 'hdr_file')]), (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]), (skullstrip_first_pass, unifize, [('out_file', 'in_file')]), (unifize, skullstrip_second_pass, [('out_file', 'in_file')]), (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]), (skullstrip_second_pass, combine_masks, [('out_file', 'operand_file') ]), (unifize, apply_mask, [('out_file', 'in_file')]), (combine_masks, apply_mask, [('out_file', 'mask_file')]), (n4_correct, mask_reportlet, [('output_image', 'background_file')]), (combine_masks, mask_reportlet, [('out_file', 'mask_file')]), (combine_masks, outputnode, [('out_file', 'mask_file')]), (mask_reportlet, outputnode, [('out_report', 'out_report')]), (apply_mask, copy_xform, [('out_file', 'in_file')]), (copy_xform, outputnode, [('out_file', 'skull_stripped_file')]), (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]), ]) return workflow
def init_bold_stc_wf(metadata, name='bold_stc_wf'): """ Create a workflow for :abbr:`STC (slice-timing correction)`. This workflow performs :abbr:`STC (slice-timing correction)` over the input :abbr:`BOLD (blood-oxygen-level dependent)` image. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold import init_bold_stc_wf wf = init_bold_stc_wf( metadata={"RepetitionTime": 2.0, "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, ) Parameters ---------- metadata : :obj:`dict` BIDS metadata for BOLD file name : :obj:`str` Name of workflow (default: ``bold_stc_wf``) Inputs ------ bold_file BOLD series NIfTI file skip_vols Number of non-steady-state volumes detected at beginning of ``bold_file`` Outputs ------- stc_file Slice-timing corrected BOLD series NIfTI file """ from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.utils import CopyXForm workflow = Workflow(name=name) workflow.__desc__ = """\ BOLD runs were slice-time corrected using `3dTshift` from AFNI {afni_ver} [@afni, RRID:SCR_005927]. """.format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []])) inputnode = pe.Node( niu.IdentityInterface(fields=['bold_file', 'skip_vols']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']), name='outputnode') LOGGER.log(25, 'Slice-timing correction will be included.') # It would be good to fingerprint memory use of afni.TShift slice_timing_correction = pe.Node(afni.TShift( outputtype='NIFTI_GZ', tr='{}s'.format(metadata["RepetitionTime"]), slice_timing=metadata['SliceTiming'], slice_encoding_direction=metadata.get('SliceEncodingDirection', 'k')), name='slice_timing_correction') copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1) workflow.connect([ (inputnode, slice_timing_correction, [('bold_file', 'in_file'), ('skip_vols', 'ignore')]), (slice_timing_correction, copy_xform, [('out_file', 'in_file')]), (inputnode, copy_xform, [('bold_file', 'hdr_file')]), (copy_xform, outputnode, [('out_file', 'stc_file')]), ]) return workflow
def init_bold_stc_wf(metadata, name='bold_stc_wf'): """ This workflow performs :abbr:`STC (slice-timing correction)` over the input :abbr:`BOLD (blood-oxygen-level dependent)` image. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold import init_bold_stc_wf wf = init_bold_stc_wf( metadata={"RepetitionTime": 2.0, "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, ) **Parameters** metadata : dict BIDS metadata for BOLD file name : str Name of workflow (default: ``bold_stc_wf``) **Inputs** bold_file BOLD series NIfTI file skip_vols Number of non-steady-state volumes detected at beginning of ``bold_file`` **Outputs** stc_file Slice-timing corrected BOLD series NIfTI file """ workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=['bold_file', 'skip_vols']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']), name='outputnode') LOGGER.log(25, 'Slice-timing correction will be included.') def create_custom_slice_timing_file_func(metadata): import os slice_timings_sec = ["%f" % t for t in metadata["SliceTiming"]] out_file = os.path.abspath("timings.1D") with open(out_file, "w") as fp: fp.write("\t".join(slice_timings_sec)) return out_file create_custom_slice_timing_file = pe.Node( niu.Function(function=create_custom_slice_timing_file_func), name="create_custom_slice_timing_file", mem_gb=DEFAULT_MEMORY_MIN_GB) create_custom_slice_timing_file.inputs.metadata = metadata # It would be good to fingerprint memory use of afni.TShift slice_timing_correction = pe.Node(afni.TShift( outputtype='NIFTI_GZ', tr='{}s'.format(metadata["RepetitionTime"])), name='slice_timing_correction') copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1) def _prefix_at(x): return "@%s" % x workflow.connect([ (inputnode, slice_timing_correction, [('bold_file', 'in_file'), ('skip_vols', 'ignore')]), (create_custom_slice_timing_file, slice_timing_correction, [(('out', _prefix_at), 'tpattern')]), (slice_timing_correction, copy_xform, [('out_file', 'in_file')]), (inputnode, copy_xform, [('bold_file', 'hdr_file')]), (copy_xform, outputnode, [('out_file', 'stc_file')]), ]) return workflow
def init_enhance_and_skullstrip_bold_wf( name='enhance_and_skullstrip_bold_wf', pre_mask=False, omp_nthreads=1): """ This workflow takes in a :abbr:`BOLD (blood-oxygen level-dependant)` :abbr:`fMRI (functional MRI)` average/summary (e.g. a reference image averaging non-steady-state timepoints), and sharpens the histogram with the application of the N4 algorithm for removing the :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal mask. Steps of this workflow are: 1. Calculate a tentative mask by registering (9-parameters) to *fMRIPrep*'s :abbr:`EPI (echo-planar imaging)` -*boldref* template, which is in MNI space. The tentative mask is obtained by resampling the MNI template's brainmask into *boldref*-space. 2. Binary dilation of the tentative mask with a sphere of 3mm diameter. 3. Run ANTs' ``N4BiasFieldCorrection`` on the input :abbr:`BOLD (blood-oxygen level-dependant)` average, using the mask generated in 1) instead of the internal Otsu thresholding. 4. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology dilation of one iteration and a sphere of 6mm as structuring element. 5. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image with the latest mask calculated in 3), then use AFNI's ``3dUnifize`` to *standardize* the T2* contrast distribution. 6. Calculate a mask using AFNI's ``3dAutomask`` after the contrast enhancement of 4). 7. Calculate a final mask as the intersection of 4) and 6). 8. Apply final mask on the enhanced reference. Step 1 can be skipped if the ``pre_mask`` argument is set to ``True`` and a tentative mask is passed in to the workflow throught the ``pre_mask`` Nipype input. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1) **Parameters** name : str Name of workflow (default: ``enhance_and_skullstrip_bold_wf``) pre_mask : bool Indicates whether the ``pre_mask`` input will be set (and thus, step 1 should be skipped). omp_nthreads : int number of threads available to parallel nodes **Inputs** in_file BOLD image (single volume) pre_mask : bool A tentative brain mask to initialize the workflow (requires ``pre_mask`` parameter set ``True``). **Outputs** bias_corrected_file the ``in_file`` after `N4BiasFieldCorrection`_ skull_stripped_file the ``bias_corrected_file`` after skull-stripping mask_file mask of the skull-stripped input file out_report reportlet for the skull-stripping .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053 """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'pre_mask']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'mask_file', 'skull_stripped_file', 'bias_corrected_file']), name='outputnode') # Dilate pre_mask pre_dilate = pe.Node(fsl.DilateImage( operation='max', kernel_shape='sphere', kernel_size=3.0, internal_datatype='char'), name='pre_mask_dilate') # Ensure mask's header matches reference's check_hdr = pe.Node(MatchHeader(), name='check_hdr', run_without_submitting=True) # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1) n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4_correct', n_procs=1) # Create a generous BET mask out of the bias-corrected EPI skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True), name='skullstrip_first_pass') bet_dilate = pe.Node(fsl.DilateImage( operation='max', kernel_shape='sphere', kernel_size=6.0, internal_datatype='char'), name='skullstrip_first_dilate') bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask') # Use AFNI's unifize for T2 constrast & fix header unifize = pe.Node(afni.Unifize( t2=True, outputtype='NIFTI_GZ', # Default -clfrac is 0.1, 0.4 was too conservative # -rbt because I'm a Jedi AFNI Master (see 3dUnifize's documentation) args='-clfrac 0.2 -rbt 18.3 65.0 90.0', out_file="uni.nii.gz"), name='unifize') fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1) # Run ANFI's 3dAutomask to extract a refined brain mask skullstrip_second_pass = pe.Node(afni.Automask(dilate=1, outputtype='NIFTI_GZ'), name='skullstrip_second_pass') fixhdr_skullstrip2 = pe.Node(CopyXForm(), name='fixhdr_skullstrip2', mem_gb=0.1) # Take intersection of both masks combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'), name='combine_masks') # Compute masked brain apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask') if not pre_mask: bold_template = get_template('MNI152NLin2009cAsym', 'res-02_desc-fMRIPrep_boldref.nii.gz') brain_mask = get_template('MNI152NLin2009cAsym', 'res-02_desc-brain_mask.nii.gz') # Initialize transforms with antsAI init_aff = pe.Node(AI( fixed_image=str(bold_template), fixed_image_mask=str(brain_mask), metric=('Mattes', 32, 'Regular', 0.2), transform=('Affine', 0.1), search_factor=(20, 0.12), principal_axes=False, convergence=(10, 1e-6, 10), verbose=True), name='init_aff', n_procs=omp_nthreads) # Registration().version may be None if parseversion(Registration().version or '0.0.0') > Version('2.2.0'): init_aff.inputs.search_grid = (40, (0, 40, 40)) # Set up spatial normalization norm = pe.Node(Registration( from_file=pkgr_fn( 'fmriprep.data', 'epi_atlasbased_brainmask.json')), name='norm', n_procs=omp_nthreads) norm.inputs.fixed_image = str(bold_template) map_brainmask = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True, input_image=str(brain_mask)), name='map_brainmask' ) workflow.connect([ (inputnode, init_aff, [('in_file', 'moving_image')]), (inputnode, map_brainmask, [('in_file', 'reference_image')]), (inputnode, norm, [('in_file', 'moving_image')]), (init_aff, norm, [('output_transform', 'initial_moving_transform')]), (norm, map_brainmask, [ ('reverse_invert_flags', 'invert_transform_flags'), ('reverse_transforms', 'transforms')]), (map_brainmask, pre_dilate, [('output_image', 'in_file')]), ]) else: workflow.connect([ (inputnode, pre_dilate, [('pre_mask', 'in_file')]), ]) workflow.connect([ (inputnode, check_hdr, [('in_file', 'reference')]), (pre_dilate, check_hdr, [('out_file', 'in_file')]), (check_hdr, n4_correct, [('out_file', 'mask_image')]), (inputnode, n4_correct, [('in_file', 'input_image')]), (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]), (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]), (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]), (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]), (bet_dilate, bet_mask, [('out_file', 'mask_file')]), (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]), (bet_mask, unifize, [('out_file', 'in_file')]), (unifize, fixhdr_unifize, [('out_file', 'in_file')]), (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]), (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]), (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file')]), (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]), (fixhdr_unifize, apply_mask, [('out_file', 'in_file')]), (combine_masks, apply_mask, [('out_file', 'mask_file')]), (combine_masks, outputnode, [('out_file', 'mask_file')]), (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]), (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]), ]) return workflow
def init_enhance_and_skullstrip_bold_wf(name='enhance_and_skullstrip_bold_wf', omp_nthreads=1, enhance_t2=False): """ This workflow takes in a :abbr:`BOLD (blood-oxygen level-dependant)` :abbr:`fMRI (functional MRI)` average/summary (e.g. a reference image averaging non-steady-state timepoints), and sharpens the histogram with the application of the N4 algorithm for removing the :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal mask. Steps of this workflow are: 1. Calculate a conservative mask using Nilearn's ``create_epi_mask``. 2. Run ANTs' ``N4BiasFieldCorrection`` on the input :abbr:`BOLD (blood-oxygen level-dependant)` average, using the mask generated in 1) instead of the internal Otsu thresholding. 3. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology dilation of one iteration and a sphere of 6mm as structuring element. 4. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image with the latest mask calculated in 3), then use AFNI's ``3dUnifize`` to *standardize* the T2* contrast distribution. 5. Calculate a mask using AFNI's ``3dAutomask`` after the contrast enhancement of 4). 6. Calculate a final mask as the intersection of 3) and 5). 7. Apply final mask on the enhanced reference. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1) **Parameters** name : str Name of workflow (default: ``enhance_and_skullstrip_bold_wf``) omp_nthreads : int number of threads available to parallel nodes enhance_t2 : bool perform logarithmic transform of input BOLD image to improve contrast before calculating the preliminary mask **Inputs** in_file BOLD image (single volume) **Outputs** bias_corrected_file the ``in_file`` after `N4BiasFieldCorrection`_ skull_stripped_file the ``bias_corrected_file`` after skull-stripping mask_file mask of the skull-stripped input file out_report reportlet for the skull-stripping .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053 """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface( fields=['mask_file', 'skull_stripped_file', 'bias_corrected_file']), name='outputnode') # Create a loose mask to avoid N4 internal's Otsu mask n4_mask = pe.Node(MaskEPI(upper_cutoff=0.75, enhance_t2=enhance_t2, opening=1, no_sanitize=True), name='n4_mask') # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1) n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4_correct', n_procs=1) # Create a generous BET mask out of the bias-corrected EPI skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True), name='skullstrip_first_pass') bet_dilate = pe.Node(fsl.DilateImage(operation='max', kernel_shape='sphere', kernel_size=6.0, internal_datatype='char'), name='skullstrip_first_dilate') bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask') # Use AFNI's unifize for T2 constrast & fix header unifize = pe.Node( afni.Unifize( t2=True, outputtype='NIFTI_GZ', # Default -clfrac is 0.1, 0.4 was too conservative # -rbt because I'm a Jedi AFNI Master (see 3dUnifize's documentation) args='-clfrac 0.2 -rbt 18.3 65.0 90.0', out_file="uni.nii.gz"), name='unifize') fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1) # Run ANFI's 3dAutomask to extract a refined brain mask skullstrip_second_pass = pe.Node(afni.Automask(dilate=1, outputtype='NIFTI_GZ'), name='skullstrip_second_pass') fixhdr_skullstrip2 = pe.Node(CopyXForm(), name='fixhdr_skullstrip2', mem_gb=0.1) # Take intersection of both masks combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'), name='combine_masks') # Compute masked brain apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask') workflow.connect([ (inputnode, n4_mask, [('in_file', 'in_files')]), (inputnode, n4_correct, [('in_file', 'input_image')]), (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]), (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]), (n4_mask, n4_correct, [('out_mask', 'mask_image')]), (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]), (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]), (bet_dilate, bet_mask, [('out_file', 'mask_file')]), (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]), (bet_mask, unifize, [('out_file', 'in_file')]), (unifize, fixhdr_unifize, [('out_file', 'in_file')]), (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]), (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]), (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file') ]), (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]), (fixhdr_unifize, apply_mask, [('out_file', 'in_file')]), (combine_masks, apply_mask, [('out_file', 'mask_file')]), (combine_masks, outputnode, [('out_file', 'mask_file')]), (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]), (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]), ]) return workflow
def init_enhance_and_skullstrip_dwi_wf(name='enhance_and_skullstrip_dwi_wf', omp_nthreads=1): """ Enhance a *b0* reference and perform brain extraction. This workflow takes in a *b0* reference image and sharpens the histogram with the application of the N4 algorithm for removing the :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal mask. Steps of this workflow are: 1. Run ANTs' ``N4BiasFieldCorrection`` on the input dwi reference image and mask. 2. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology dilation of one iteration and a sphere of 6mm as structuring element. 3. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image with the latest mask calculated in 3), then use AFNI's ``3dUnifize`` to *standardize* the T2* contrast distribution. 4. Calculate a mask using AFNI's ``3dAutomask`` after the contrast enhancement of 4). 5. Calculate a final mask as the intersection of 2) and 4). 6. Apply final mask on the enhanced reference. Workflow Graph: .. workflow :: :graph2use: orig :simple_form: yes from dmriprep.workflows.dwi.util import init_enhance_and_skullstrip_dwi_wf wf = init_enhance_and_skullstrip_dwi_wf(omp_nthreads=1) .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053 Parameters ---------- name : str Name of workflow (default: ``enhance_and_skullstrip_dwi_wf``) omp_nthreads : int number of threads available to parallel nodes Inputs ------ in_file The *b0* reference (single volume) pre_mask initial mask Outputs ------- bias_corrected_file the ``in_file`` after `N4BiasFieldCorrection`_ skull_stripped_file the ``bias_corrected_file`` after skull-stripping mask_file mask of the skull-stripped input file out_report reportlet for the skull-stripping """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'pre_mask']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface( fields=['mask_file', 'skull_stripped_file', 'bias_corrected_file']), name='outputnode') # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1) n4_correct = pe.Node(N4BiasFieldCorrection(dimension=3, copy_header=True, bspline_fitting_distance=200), shrink_factor=2, name='n4_correct', n_procs=1) n4_correct.inputs.rescale_intensities = True # Create a generous BET mask out of the bias-corrected EPI skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True), name='skullstrip_first_pass') bet_dilate = pe.Node(fsl.DilateImage(operation='max', kernel_shape='sphere', kernel_size=6.0, internal_datatype='char'), name='skullstrip_first_dilate') bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask') # Use AFNI's unifize for T2 contrast & fix header unifize = pe.Node(afni.Unifize(t2=True, outputtype='NIFTI_GZ', args='-clfrac 0.2 -rbt 18.3 65.0 90.0', out_file='uni.nii.gz'), name='unifize') fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1) # Run AFNI's 3dAutomask to extract a refined brain mask skullstrip_second_pass = pe.Node(afni.Automask(dilate=1, outputtype='NIFTI_GZ'), name='skullstrip_second_pass') fixhdr_skullstrip2 = pe.Node(CopyXForm(), name='fixhdr_skullstrip2', mem_gb=0.1) # Take intersection of both masks combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'), name='combine_masks') normalize = pe.Node(niu.Function(function=_normalize), name="normalize") # Compute masked brain apply_mask = pe.Node(ApplyMask(), name='apply_mask') workflow.connect([ (inputnode, n4_correct, [('in_file', 'input_image'), ('pre_mask', 'mask_image')]), (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]), (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]), (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]), (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]), (bet_dilate, bet_mask, [('out_file', 'mask_file')]), (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]), (bet_mask, unifize, [('out_file', 'in_file')]), (unifize, fixhdr_unifize, [('out_file', 'in_file')]), (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]), (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]), (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file') ]), (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]), (combine_masks, apply_mask, [('out_file', 'in_mask')]), (combine_masks, outputnode, [('out_file', 'mask_file')]), (n4_correct, normalize, [('output_image', 'in_file')]), (normalize, apply_mask, [('out', 'in_file')]), (normalize, outputnode, [('out', 'bias_corrected_file')]), (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]), ]) return workflow
def init_bold_stc_wf(metadata, name='bold_stc_wf'): """ This workflow performs :abbr:`STC (slice-timing correction)` over the input :abbr:`BOLD (blood-oxygen-level dependent)` image. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold import init_bold_stc_wf wf = init_bold_stc_wf( metadata={"RepetitionTime": 2.0, "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, ) **Parameters** metadata : dict BIDS metadata for BOLD file name : str Name of workflow (default: ``bold_stc_wf``) **Inputs** bold_file BOLD series NIfTI file skip_vols Number of non-steady-state volumes detected at beginning of ``bold_file`` **Outputs** stc_file Slice-timing corrected BOLD series NIfTI file """ workflow = Workflow(name=name) workflow.__desc__ = """\ BOLD runs were slice-time corrected using `3dTshift` from AFNI {afni_ver} [@afni, RRID:SCR_005927]. """.format(afni_ver=''.join(list(afni.TShift().version or '<ver>'))) inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'skip_vols']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']), name='outputnode') LOGGER.log(25, 'Slice-timing correction will be included.') # It would be good to fingerprint memory use of afni.TShift slice_timing_correction = pe.Node( afni.TShift(outputtype='NIFTI_GZ', tr='{}s'.format(metadata["RepetitionTime"]), slice_timing=metadata['SliceTiming']), name='slice_timing_correction') copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1) workflow.connect([ (inputnode, slice_timing_correction, [('bold_file', 'in_file'), ('skip_vols', 'ignore')]), (slice_timing_correction, copy_xform, [('out_file', 'in_file')]), (inputnode, copy_xform, [('bold_file', 'hdr_file')]), (copy_xform, outputnode, [('out_file', 'stc_file')]), ]) return workflow