Exemple #1
0
class MyAdaptiveFilter(BasicFilter):
    def __init__(self, name, acc, trans, noits, meats, u0, v0_prob, wk_prob,
                 vk_prob, total_frame, param):
        super().__init__(name, acc, trans, noits, meats, u0, v0_prob, wk_prob,
                         vk_prob, total_frame)
        self.model = NNModel(param)

    def fit(self,
            X_train,
            y_train,
            is_valid=True,
            save_model=False,
            path=None):
        self.model.fit(X_train, y_train, is_valid=is_valid)
        if save_model:
            self.model.save_model(path)

    def predict(self, measure, TPM, *args, **kwargs):
        load_model = kwargs['load_model']
        path = kwargs['path']
        if load_model:
            self.model.load_model(path)
        sample = measure.shape[0]
        LH = np.empty([sample, 3], np.float32)
        uk = np.empty([sample, 3], np.float32)
        X = np.empty([sample, 3, 2], np.float32)
        P = np.empty([sample, 3, 2, 2], np.float32)
        mode = np.empty([sample, self.frame], np.float32)
        state = np.empty([sample, self.frame, 2], np.float32)
        his_TPM = np.empty([sample, self.frame, 3, 3], np.float32)
        for i in range(sample):
            mode[i], state[i], X[i], P[i], LH[i], uk[i] = self.initial_state(
                measure[i, 0])
        for k in range(1, self.frame):
            for i in range(sample):
                mode[i, k], state[i, k], X[i], P[i], LH[i], uk[i] = \
                    self.IMMFilter(measure[i, k], TPM[i], X[i], P[i], LH[i], uk[i])
            X_test = np.concatenate([
                np.zeros([sample, self.frame - 1 - k, 3], dtype=np.float32),
                np.array([
                    mode[:, :k + 1] == 0, mode[:, :k + 1] == 1, mode[:, :k + 1]
                    == 2
                ],
                         dtype=np.float32).transpose([1, 2, 0])
            ],
                                    axis=1).reshape([sample, -1])
            TPM = self.model.predict(X_test)
            his_TPM[:, k] = TPM
        return state, mode, his_TPM
Exemple #2
0
def load_model():
    model = NNModel()
    model.load_model("./model_51_file_training.h5")
    print(model.model.summary())
    return model
Exemple #3
0
from nn_model import NNModel, ModelStateLogDTO
from experiment_datasets_creator import ExperimentCreator
from phonology_tool import PhonologyTool

MODEL_FILENAME = "../model_size_2_activation_sigmoid.pkl"
test_data_fn = "data/tur_swadesh.txt"
phonology_features_filename = "data/tur_phon_features.tsv"

model = NNModel.load_model(MODEL_FILENAME)

test_dataset = []
with open(test_data_fn, 'r', encoding="utf-8") as test_data_f:
    for line in test_data_f:
        if all(c in model.alphabet for c in line.strip()):
            test_dataset.append(line.strip())

phonologyTool = PhonologyTool(phonology_features_filename)
experimentCreator = ExperimentCreator(model, test_dataset, phonologyTool)

# front_harmony_dataset
front_harmony_dataset_fn = "front_harmony_dataset.tsv"
front_harmony_dataset = experimentCreator.make_dataset_pretty(
    experimentCreator.front_harmony_dataset())
experimentCreator.save_dataset_to_tsv(front_harmony_dataset,
                                      front_harmony_dataset_fn)

# vov_vs_cons_dataset
vov_vs_cons_dataset_fn = "vov_vs_cons_dataset.tsv"
vov_vs_cons_dataset = experimentCreator.make_dataset_pretty(
    experimentCreator.vov_vs_cons_dataset())
experimentCreator.save_dataset_to_tsv(vov_vs_cons_dataset,