Exemple #1
0
def train(dataset: 'Dataset', epochs: int = 10):
    loader = DataLoader(dataset, batch_size=2, shuffle=True)

    model = NNModel(n_input=2, n_output=3)
    # model.to(device='cpu')

    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
    criterion = torch.nn.CrossEntropyLoss()

    start_tm = time.time()
    for epoch in range(1, epochs + 1):
        train_loss = 0.0
        train_acc = 0
        for x, y in loader:
            optimizer.zero_grad()

            y_pred = model(x)
            y = torch.max(torch.squeeze(y, dim=1), dim=1).indices

            loss = criterion(y_pred, y)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            train_acc += (y_pred.argmax(1) == y).sum().item()
        print(f'[epoch {epoch:02d}]\tloss:{train_loss}\taccuracy:{train_acc}')
    finish_tm = time.time()
    print(f'train finished.({finish_tm-start_tm}sec)')
Exemple #2
0
def main():
    X = torch.randn(1, 1, 32, 32)
    y = torch.randn(10).view(1, -1)

    model = NNModel()
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

    optimizer.zero_grad()
    y_pred = model(X)
    loss = criterion(y_pred, y)

    print(y_pred)
    print(loss)

    loss.backward()
    optimizer.step()

    print('DONE')