def addFileNames(self, fileNames):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        """
        with Tracer(traceLogger):
            # Allocate additional subslots in the operator inputs.
            oldNumFiles = len(self.mainOperator.Dataset)
            self.mainOperator.Dataset.resize( oldNumFiles+len(fileNames) )
    
            # Assign values to the new inputs we just allocated.
            # The GUI will be updated by callbacks that are listening to slot changes
            for i, filePath in enumerate(fileNames):
                datasetInfo = DatasetInfo()
                cwd = self.mainOperator.WorkingDirectory.value
                absPath, relPath = getPathVariants(filePath, cwd)

                # Relative by default, unless the file is in a totally different tree from the working directory.
                if len(os.path.commonprefix([cwd, absPath])) > 1: 
                   datasetInfo.filePath = relPath
                else:
                   datasetInfo.filePath = absPath

                h5Exts = ['.ilp', '.h5', '.hdf5']
                if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                    datasetNames = self.getPossibleInternalPaths( absPath )
                    if len(datasetNames) > 0:
                        datasetInfo.filePath += str(datasetNames[0])
                    else:
                        raise RuntimeError("HDF5 file has no image datasets")
                
                # Allow labels by default if this gui isn't being used for batch data.
                datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )

                self.mainOperator.Dataset[i+oldNumFiles].setValue( datasetInfo )
Exemple #2
0
    def addFileNames(self, fileNames):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        """
        with Tracer(traceLogger):
            # Allocate additional subslots in the operator inputs.
            oldNumFiles = len(self.mainOperator.Dataset)
            self.mainOperator.Dataset.resize(oldNumFiles + len(fileNames))

            # Assign values to the new inputs we just allocated.
            # The GUI will be updated by callbacks that are listening to slot changes
            for i, filePath in enumerate(fileNames):
                datasetInfo = DatasetInfo()
                cwd = self.mainOperator.WorkingDirectory.value
                absPath, relPath = getPathVariants(filePath, cwd)

                # Relative by default, unless the file is in a totally different tree from the working directory.
                if len(os.path.commonprefix([cwd, absPath])) > 1:
                    datasetInfo.filePath = relPath
                else:
                    datasetInfo.filePath = absPath

                # Allow labels by default if this gui isn't being used for batch data.
                datasetInfo.allowLabels = (self.guiMode == GuiMode.Normal)

                self.mainOperator.Dataset[i +
                                          oldNumFiles].setValue(datasetInfo)
    def _deserializeFromHdf5(self, topGroup, groupVersion, hdf5File,
                             projectFilePath):
        with Tracer(traceLogger):
            self._projectFilePath = projectFilePath
            self.initWithoutTopGroup(hdf5File, projectFilePath)

            infoDir = topGroup['infos']

            self.mainOperator.Dataset.resize(len(infoDir))
            for index, (infoGroupName,
                        infoGroup) in enumerate(sorted(infoDir.items())):
                datasetInfo = DatasetInfo()

                # Make a reverse-lookup of the location storage strings
                LocationLookup = {
                    v: k
                    for k, v in self.LocationStrings.items()
                }
                datasetInfo.location = LocationLookup[str(
                    infoGroup['location'].value)]

                # Write to the 'private' members to avoid resetting the dataset id
                datasetInfo._filePath = str(infoGroup['filePath'].value)
                datasetInfo._datasetId = str(infoGroup['datasetId'].value)

                # Deserialize the "allow labels" flag
                try:
                    datasetInfo.allowLabels = infoGroup['allowLabels'].value
                except KeyError:
                    pass

                # Deserialize the axisorder (if present)
                try:
                    datasetInfo.axisorder = infoGroup['axisorder'].value
                except KeyError:
                    if ilastik.utility.globals.ImportOptions.default_axis_order is not None:
                        datasetInfo.axisorder = ilastik.utility.globals.ImportOptions.default_axis_order

                # If the data is supposed to be in the project,
                #  check for it now.
                if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
                    if not datasetInfo.datasetId in topGroup[
                            'local_data'].keys():
                        raise RuntimeError(
                            "Corrupt project file.  Could not find data for " +
                            infoGroupName)

                # If the data is supposed to exist outside the project, make sure it really does.
                if datasetInfo.location == DatasetInfo.Location.FileSystem:
                    filePath = PathComponents(
                        datasetInfo.filePath,
                        os.path.split(projectFilePath)[0]).externalPath
                    if not os.path.exists(filePath):
                        raise RuntimeError("Could not find external data: " +
                                           filePath)

                # Give the new info to the operator
                self.mainOperator.Dataset[index].setValue(datasetInfo)

            self._dirty = False
    def _deserializeFromHdf5(self, topGroup, groupVersion, hdf5File, projectFilePath, headless):
        self._projectFilePath = projectFilePath
        self.initWithoutTopGroup(hdf5File, projectFilePath)
        
        # normally the serializer is not dirty after loading a project file
        # however, when the file was corrupted, the user has the possibility
        # to save the fixed file after loading it.
        dirty = False 
        
        infoDir = topGroup['infos']
        
        self.topLevelOperator.Dataset.resize( len(infoDir) )
        for index, (infoGroupName, infoGroup) in enumerate( sorted(infoDir.items()) ):
            datasetInfo = DatasetInfo()

            # Make a reverse-lookup of the location storage strings            
            LocationLookup = { v:k for k,v in self.LocationStrings.items() }
            datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
            
            # Write to the 'private' members to avoid resetting the dataset id
            datasetInfo._filePath = str(infoGroup['filePath'].value)
            datasetInfo._datasetId = str(infoGroup['datasetId'].value)

            # Deserialize the "allow labels" flag
            try:
                datasetInfo.allowLabels = infoGroup['allowLabels'].value
            except KeyError:
                pass

            # Deserialize the axisorder (if present)
            try:
                datasetInfo.axisorder = infoGroup['axisorder'].value
            except KeyError:
                pass
            
            # If the data is supposed to be in the project,
            #  check for it now.
            if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
                if not datasetInfo.datasetId in topGroup['local_data'].keys():
                    raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroupName)

            # If the data is supposed to exist outside the project, make sure it really does.
            if datasetInfo.location == DatasetInfo.Location.FileSystem:
                pathData = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0])
                filePath = pathData.externalPath
                if not os.path.exists(filePath):
                    if headless:
                        raise RuntimeError("Could not find data at " + filePath)
                    filt = "Image files (" + ' '.join('*.' + x for x in OpDataSelection.SupportedExtensions) + ')'
                    newpath = self.repairFile(filePath, filt)
                    newpath = newpath+pathData.internalPath
                    datasetInfo._filePath = getPathVariants(newpath , os.path.split(projectFilePath)[0])[0]
                    
                    dirty = True
                    
            # Give the new info to the operator
            self.topLevelOperator.Dataset[index].setValue(datasetInfo)

        self._dirty = dirty
Exemple #5
0
    def replaceWithStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted:
            return
        files = stackDlg.selectedFiles
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = "//".join(files)
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase
        # Add an underscore for each wildcard digit
        num_wildcards = len(files[-1]) - len(prefix) - len(
            os.path.splitext(files[-1])[1])
        info.nickname += "_" * num_wildcards

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = (self.guiMode == GuiMode.Normal)
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None:
            laneIndex = self._findFirstEmptyLane(roleIndex)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex + 1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex + 1)

        def importStack():
            self.guiControlSignal.emit(ControlCommand.DisableAll)
            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset(info)
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][
                        roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    return_val = [False]
                    self.handleDatasetConstraintError(info, filename, ex,
                                                      roleIndex, laneIndex,
                                                      return_val)
                    if not return_val[0]:
                        # Not successfully repaired.  Roll back the changes and give up.
                        self.topLevelOperator.DatasetGroup.resize(
                            originalNumLanes)
            finally:
                self.guiControlSignal.emit(ControlCommand.Pop)

        req = Request(importStack)
        req.notify_failed(
            partial(self.handleFailedStackLoad, files, originalNumLanes))
        req.submit()
    def addStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted :
            return
        files = stackDlg.selectedFiles
        sequence_axis = stackDlg.sequence_axis
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = os.path.pathsep.join( files )
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase
        # Add an underscore for each wildcard digit
        num_wildcards = len(files[-1]) - len(prefix) - len( os.path.splitext(files[-1])[1] )
        info.nickname += "_"*num_wildcards

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None or laneIndex == -1:
            laneIndex = len(self.topLevelOperator.DatasetGroup)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex+1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex+1)

        def importStack():
            self.parentApplet.busy = True
            self.parentApplet.appletStateUpdateRequested.emit()

            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset( info, sequence_axis )
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    return_val = [False]
                    self.handleDatasetConstraintError( info, filename, ex, roleIndex, laneIndex, return_val )
                    if not return_val[0]:
                        # Not successfully repaired.  Roll back the changes and give up.
                        self.topLevelOperator.DatasetGroup.resize(originalNumLanes)
            finally:
                self.parentApplet.busy = False
                self.parentApplet.appletStateUpdateRequested.emit()

        req = Request( importStack )
        req.notify_finished( lambda result: self.showDataset(laneIndex, roleIndex) )
        req.notify_failed( partial(self.handleFailedStackLoad, files, originalNumLanes ) )
        req.submit()
Exemple #7
0
    def _createDatasetInfo(self, roleIndex, filePath, roi):
        """
        Create a DatasetInfo object for the given filePath and roi.
        roi may be None, in which case it is ignored.
        """
        datasetInfo = DatasetInfo()

        if roi is not None:
            datasetInfo.subvolume_roi = roi

        cwd = self.topLevelOperator.WorkingDirectory.value

        absPath, relPath = getPathVariants(filePath, cwd)

        # Relative by default, unless the file is in a totally different tree from the working directory.
        if relPath is not None and len(os.path.commonprefix([cwd, absPath
                                                             ])) > 1:
            datasetInfo.filePath = relPath
        else:
            datasetInfo.filePath = absPath

        datasetInfo.nickname = PathComponents(absPath).filenameBase

        h5Exts = ['.ilp', '.h5', '.hdf5']
        if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
            datasetNames = self.getPossibleInternalPaths(absPath)
            if len(datasetNames) == 0:
                raise RuntimeError("HDF5 file %s has no image datasets" %
                                   datasetInfo.filePath)
            elif len(datasetNames) == 1:
                datasetInfo.filePath += str(datasetNames[0])
            else:
                # If exactly one of the file's datasets matches a user's previous choice, use it.
                if roleIndex not in self._default_h5_volumes:
                    self._default_h5_volumes[roleIndex] = set()
                previous_selections = self._default_h5_volumes[roleIndex]
                possible_auto_selections = previous_selections.intersection(
                    datasetNames)
                if len(possible_auto_selections) == 1:
                    datasetInfo.filePath += str(
                        list(possible_auto_selections)[0])
                else:
                    # Ask the user which dataset to choose
                    dlg = H5VolumeSelectionDlg(datasetNames, self)
                    if dlg.exec_() == QDialog.Accepted:
                        selected_index = dlg.combo.currentIndex()
                        selected_dataset = str(datasetNames[selected_index])
                        datasetInfo.filePath += selected_dataset
                        self._default_h5_volumes[roleIndex].add(
                            selected_dataset)
                    else:
                        raise DataSelectionGui.UserCancelledError()

        # Allow labels by default if this gui isn't being used for batch data.
        datasetInfo.allowLabels = (self.guiMode == GuiMode.Normal)
        return datasetInfo
    def addFileNames(self, fileNames):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        """
        with Tracer(traceLogger):
            infos = []

            oldNumFiles = len(self.topLevelOperator.Dataset)
            # HACK: If the filePath isn't valid, replace it
            # This is to work around the scenario where two independent data selection applets are coupled, causing mutual resizes.
            # This will be fixed when a multi-file data selection applet gui replaces this gui.            
            for i in reversed( range( oldNumFiles ) ):
                if not self.topLevelOperator.Dataset[i].ready():
                    oldNumFiles -= 1
                else:
                    break
            
    
            # Assign values to the new inputs we just allocated.
            # The GUI will be updated by callbacks that are listening to slot changes
            for i, filePath in enumerate(fileNames):
                datasetInfo = DatasetInfo()
                cwd = self.topLevelOperator.WorkingDirectory.value
                
                if not areOnSameDrive(filePath,cwd):
                    QMessageBox.critical(self, "Drive Error","Data must be on same drive as working directory.")
                    return
                    
                absPath, relPath = getPathVariants(filePath, cwd)
                
                # Relative by default, unless the file is in a totally different tree from the working directory.
                if len(os.path.commonprefix([cwd, absPath])) > 1:
                    datasetInfo.filePath = relPath
                else:
                    datasetInfo.filePath = absPath

                h5Exts = ['.ilp', '.h5', '.hdf5']
                if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                    datasetNames = self.getPossibleInternalPaths( absPath )
                    if len(datasetNames) > 0:
                        datasetInfo.filePath += str(datasetNames[0])
                    else:
                        raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)

                # Allow labels by default if this gui isn't being used for batch data.
                datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
                infos.append(datasetInfo)

            #if no exception was thrown, set up the operator now
            self.topLevelOperator.Dataset.resize( oldNumFiles+len(fileNames) )
            for i in range(len(infos)):
                self.topLevelOperator.Dataset[i+oldNumFiles].setValue( infos[i] )
    def _createDatasetInfo(self, roleIndex, filePath, roi):
        """
        Create a DatasetInfo object for the given filePath and roi.
        roi may be None, in which case it is ignored.
        """
        datasetInfo = DatasetInfo()
        
        if roi is not None:
            datasetInfo.subvolume_roi = roi
        
        cwd = self.topLevelOperator.WorkingDirectory.value
        
        absPath, relPath = getPathVariants(filePath, cwd)
        
        # Relative by default, unless the file is in a totally different tree from the working directory.
        if relPath is not None and len(os.path.commonprefix([cwd, absPath])) > 1:
            datasetInfo.filePath = relPath
        else:
            datasetInfo.filePath = absPath
            
        datasetInfo.nickname = PathComponents(absPath).filenameBase

        h5Exts = ['.ilp', '.h5', '.hdf5']
        if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
            datasetNames = self.getPossibleInternalPaths( absPath )
            if len(datasetNames) == 0:
                raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)
            elif len(datasetNames) == 1:
                datasetInfo.filePath += str(datasetNames[0])
            else:
                # If exactly one of the file's datasets matches a user's previous choice, use it.
                if roleIndex not in self._default_h5_volumes:
                    self._default_h5_volumes[roleIndex] = set()
                previous_selections = self._default_h5_volumes[roleIndex]
                possible_auto_selections = previous_selections.intersection(datasetNames)
                if len(possible_auto_selections) == 1:
                    datasetInfo.filePath += str(list(possible_auto_selections)[0])
                else:
                    # Ask the user which dataset to choose
                    dlg = H5VolumeSelectionDlg(datasetNames, self)
                    if dlg.exec_() == QDialog.Accepted:
                        selected_index = dlg.combo.currentIndex()
                        selected_dataset = str(datasetNames[selected_index])
                        datasetInfo.filePath += selected_dataset
                        self._default_h5_volumes[roleIndex].add( selected_dataset )
                    else:
                        raise DataSelectionGui.UserCancelledError()

        # Allow labels by default if this gui isn't being used for batch data.
        datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
        return datasetInfo
    def _deserializeFromHdf5(self, topGroup, groupVersion, hdf5File, projectFilePath):
        with Tracer(traceLogger):
            self._projectFilePath = projectFilePath
            self.initWithoutTopGroup(hdf5File, projectFilePath)

            infoDir = topGroup['infos']
            
            self.mainOperator.Dataset.resize( len(infoDir) )
            for index, (infoGroupName, infoGroup) in enumerate( sorted(infoDir.items()) ):
                datasetInfo = DatasetInfo()
    
                # Make a reverse-lookup of the location storage strings            
                LocationLookup = { v:k for k,v in self.LocationStrings.items() }
                datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
                
                # Write to the 'private' members to avoid resetting the dataset id
                datasetInfo._filePath = str(infoGroup['filePath'].value)
                datasetInfo._datasetId = str(infoGroup['datasetId'].value)
    
                # Deserialize the "allow labels" flag
                try:
                    datasetInfo.allowLabels = infoGroup['allowLabels'].value
                except KeyError:
                    pass

                # Deserialize the axisorder (if present)
                try:
                    datasetInfo.axisorder = infoGroup['axisorder'].value
                except KeyError:
                    if ilastik.utility.globals.ImportOptions.default_axis_order is not None:
                        datasetInfo.axisorder = ilastik.utility.globals.ImportOptions.default_axis_order
                
                # If the data is supposed to be in the project,
                #  check for it now.
                if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
                    if not datasetInfo.datasetId in topGroup['local_data'].keys():
                        raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroupName)
    
                # If the data is supposed to exist outside the project, make sure it really does.
                if datasetInfo.location == DatasetInfo.Location.FileSystem:
                    filePath = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0] ).externalPath
                    if not os.path.exists(filePath):
                        raise RuntimeError("Could not find external data: " + filePath)
    
                # Give the new info to the operator
                self.mainOperator.Dataset[index].setValue(datasetInfo)
    
            self._dirty = False
    def replaceWithStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted :
            return
        files = stackDlg.selectedFiles
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = "//".join( files )
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase + "..."

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None:
            laneIndex = self._findFirstEmptyLane(roleIndex)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex+1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex+1)

        def importStack():
            self.guiControlSignal.emit( ControlCommand.DisableAll )
            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset( info )
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    if not self.handleDatasetConstraintError( info, filename, ex, roleIndex, laneIndex ):
                        self.topLevelOperator.DatasetGroup.resize(originalNumLanes)
            finally:
                self.guiControlSignal.emit( ControlCommand.Pop )

        req = Request( importStack )
        req.notify_failed( partial(self.handleFailedStackLoad, files, originalNumLanes ) )
        req.submit()
Exemple #12
0
    def importStackFromGlobString(self, globString):
        """
        The word 'glob' is used loosely here.  See the OpStackLoader operator for details.
        """
        info = DatasetInfo()
        info.filePath = globString
        
        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )
        
        def importStack():
            self.guiControlSignal.emit( ControlCommand.DisableAll )
            # Serializer will update the operator for us, which will propagate to the GUI.
            self.serializer.importStackAsLocalDataset( info )
            self.guiControlSignal.emit( ControlCommand.Pop )

        importThread = threading.Thread( target=importStack )
        importThread.start()
Exemple #13
0
    def importStackFromGlobString(self, globString):
        """
        The word 'glob' is used loosely here.  See the OpStackLoader operator for details.
        """
        info = DatasetInfo()
        info.filePath = globString

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = (self.guiMode == GuiMode.Normal)

        def importStack():
            self.guiControlSignal.emit(ControlCommand.DisableAll)
            # Serializer will update the operator for us, which will propagate to the GUI.
            self.serializer.importStackAsLocalDataset(info)
            self.guiControlSignal.emit(ControlCommand.Pop)

        importThread = threading.Thread(target=importStack)
        importThread.start()
    def importStackFromGlobString(self, globString):
        """
        The word 'glob' is used loosely here.  See the OpStackLoader operator for details.
        """
        globString = globString.replace("\\","/")
        info = DatasetInfo()
        info.filePath = globString

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )

        def importStack():
            self.guiControlSignal.emit( ControlCommand.DisableAll )
            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset( info )
            finally:
                self.guiControlSignal.emit( ControlCommand.Pop )

        req = Request( importStack )
        req.notify_failed( partial(self.handleFailedStackLoad, globString ) )
        req.submit()
Exemple #15
0
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None:
            startingLane = self._findFirstEmptyLane(roleIndex)
            endingLane = startingLane + len(fileNames) - 1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane + len(fileNames) - 1

        if self._max_lanes and endingLane >= self._max_lanes:
            msg = "You may not add more than {} file(s) to this workflow.  Please try again.".format(
                self._max_lanes)
            QMessageBox.critical(self, "Too many files", msg)
            return

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value

            if not areOnSameDrive(filePath, cwd):
                QMessageBox.critical(
                    self, "Drive Error",
                    "Data must be on same drive as working directory.")
                return

            absPath, relPath = getPathVariants(filePath, cwd)

            # Relative by default, unless the file is in a totally different tree from the working directory.
            if len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath

            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths(absPath)
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" %
                                       datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = (self.guiMode == GuiMode.Normal)
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)

        if len(opTop.DatasetGroup) < endingLane + 1:
            opTop.DatasetGroup.resize(endingLane + 1)
        for laneIndex, info in zip(range(startingLane, endingLane + 1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][
                    roleIndex].setValue(info)
            except DatasetConstraintError as ex:
                return_val = [False]
                # Give the user a chance to fix the problem
                self.handleDatasetConstraintError(info, info.filePath, ex,
                                                  roleIndex, laneIndex,
                                                  return_val)
                if not return_val[0]:
                    # Not successfully repaired.  Roll back the changes and give up.
                    opTop.DatasetGroup.resize(originalSize)
                    break
            except OpDataSelection.InvalidDimensionalityError as ex:
                opTop.DatasetGroup.resize(originalSize)
                QMessageBox.critical(self,
                                     "Dataset has different dimensionality",
                                     ex.message)
                break
            except:
                QMessageBox.critical(
                    self, "Dataset Load Error",
                    "Wasn't able to load your dataset into the workflow.  See console for details."
                )
                opTop.DatasetGroup.resize(originalSize)
                raise
        self.updateInternalPathVisiblity()
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None:        
            startingLane = self._findFirstEmptyLane(roleIndex)
            endingLane = startingLane+len(fileNames)-1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane+len(fileNames)-1

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value
            
            if not areOnSameDrive(filePath,cwd):
                QMessageBox.critical(self, "Drive Error","Data must be on same drive as working directory.")
                return
                
            absPath, relPath = getPathVariants(filePath, cwd)
            
            # Relative by default, unless the file is in a totally different tree from the working directory.
            if len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath
                
            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths( absPath )
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)
            
        if len( opTop.DatasetGroup ) < endingLane+1:
            opTop.DatasetGroup.resize( endingLane+1 )
        for laneIndex, info in zip(range(startingLane, endingLane+1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue( info )
            except DatasetConstraintError as ex:
                # Give the user a chance to fix the problem
                if not self.handleDatasetConstraintError(info, info.filePath, ex, roleIndex, laneIndex):
                    opTop.DatasetGroup.resize( originalSize )
                    break
            except:
                QMessageBox.critical( self, "Dataset Load Error", "Wasn't able to load your dataset into the workflow.  See console for details." )
                opTop.DatasetGroup.resize( originalSize )
                raise
        self.updateInternalPathVisiblity()
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None or startingLane == -1:
            startingLane = len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane+len(fileNames)-1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            max_files = len(self.topLevelOperator.DatasetGroup) - \
                    startingLane
            if len(fileNames) > max_files:
                msg = "You selected {num_selected} files for {num_slots} "\
                      "slots. To add new files use the 'Add new...' option "\
                      "in the context menu or the button in the last row."\
                              .format(num_selected=len(fileNames),
                                      num_slots=max_files)
                QMessageBox.critical( self, "Too many files", msg )
                return
            endingLane = min(startingLane+len(fileNames)-1,
                    len(self.topLevelOperator.DatasetGroup))
            
        if self._max_lanes and endingLane >= self._max_lanes:
            msg = "You may not add more than {} file(s) to this workflow.  Please try again.".format( self._max_lanes )
            QMessageBox.critical( self, "Too many files", msg )
            return

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value
            
            absPath, relPath = getPathVariants(filePath, cwd)
            
            # Relative by default, unless the file is in a totally different tree from the working directory.
            if relPath is not None and len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath
                
            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths( absPath )
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)
            
        if len( opTop.DatasetGroup ) < endingLane+1:
            opTop.DatasetGroup.resize( endingLane+1 )
        for laneIndex, info in zip(range(startingLane, endingLane+1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue( info )
            except DatasetConstraintError as ex:
                return_val = [False]
                # Give the user a chance to fix the problem
                self.handleDatasetConstraintError(info, info.filePath, ex, roleIndex, laneIndex, return_val)
                if not return_val[0]:
                    # Not successfully repaired.  Roll back the changes and give up.
                    opTop.DatasetGroup.resize( originalSize )
                    break
            except OpDataSelection.InvalidDimensionalityError as ex:
                    opTop.DatasetGroup.resize( originalSize )
                    QMessageBox.critical( self, "Dataset has different dimensionality", ex.message )
                    break
            except:
                QMessageBox.critical( self, "Dataset Load Error", "Wasn't able to load your dataset into the workflow.  See console for details." )
                opTop.DatasetGroup.resize( originalSize )
                raise

        # If we succeeded in adding all images, show the first one.
        if laneIndex == endingLane:
            self.showDataset(startingLane, roleIndex)

        # Notify the workflow that something that could affect applet readyness has occurred.
        self.parentApplet.appletStateUpdateRequested.emit()

        self.updateInternalPathVisiblity()
    def _readDatasetInfo(self, infoGroup, localDataGroup, projectFilePath, headless):
        # Unready datasets are represented with an empty group.
        if len( infoGroup ) == 0:
            return None, False
        datasetInfo = DatasetInfo()

        # Make a reverse-lookup of the location storage strings
        LocationLookup = { v:k for k,v in self.LocationStrings.items() }
        datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
        
        # Write to the 'private' members to avoid resetting the dataset id
        datasetInfo._filePath = infoGroup['filePath'].value
        datasetInfo._datasetId = infoGroup['datasetId'].value

        try:
            datasetInfo.allowLabels = infoGroup['allowLabels'].value
        except KeyError:
            pass
        
        try:
            datasetInfo.drange = tuple( infoGroup['drange'].value )
        except KeyError:
            pass
        
        try:
            datasetInfo.nickname = infoGroup['nickname'].value
        except KeyError:
            datasetInfo.nickname = PathComponents(datasetInfo.filePath).filenameBase
        
        try:
            tags = vigra.AxisTags.fromJSON( infoGroup['axistags'].value )
            datasetInfo.axistags = tags
        except KeyError:
            # Old projects just have an 'axisorder' field instead of full axistags
            try:
                axisorder = infoGroup['axisorder'].value
                datasetInfo.axistags = vigra.defaultAxistags(axisorder)
            except KeyError:
                pass
        
        # If the data is supposed to be in the project,
        #  check for it now.
        if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
            if not datasetInfo.datasetId in localDataGroup.keys():
                raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroup.name)

        dirty = False
        # If the data is supposed to exist outside the project, make sure it really does.
        if datasetInfo.location == DatasetInfo.Location.FileSystem and not isUrl(datasetInfo.filePath):
            pathData = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0])
            filePath = pathData.externalPath
            if not os.path.exists(filePath):
                if headless:
                    raise RuntimeError("Could not find data at " + filePath)
                filt = "Image files (" + ' '.join('*.' + x for x in OpDataSelection.SupportedExtensions) + ')'
                newpath = self.repairFile(filePath, filt)
                if pathData.internalPath is not None:
                    newpath += pathData.internalPath
                datasetInfo._filePath = getPathVariants(newpath , os.path.split(projectFilePath)[0])[0]
                dirty = True
        
        return datasetInfo, dirty
    def _readDatasetInfo(self, infoGroup, localDataGroup, projectFilePath, headless):
        # Unready datasets are represented with an empty group.
        if len( infoGroup ) == 0:
            return None, False
        datasetInfo = DatasetInfo()

        # Make a reverse-lookup of the location storage strings
        LocationLookup = { v:k for k,v in self.LocationStrings.items() }
        datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
        
        # Write to the 'private' members to avoid resetting the dataset id
        datasetInfo._filePath = infoGroup['filePath'].value
        datasetInfo._datasetId = infoGroup['datasetId'].value

        try:
            datasetInfo.allowLabels = infoGroup['allowLabels'].value
        except KeyError:
            pass
        
        try:
            datasetInfo.drange = tuple( infoGroup['drange'].value )
        except KeyError:
            pass
        
        try:
            datasetInfo.nickname = infoGroup['nickname'].value
        except KeyError:
            datasetInfo.nickname = PathComponents(datasetInfo.filePath).filenameBase
        
        try:
            datasetInfo.fromstack = infoGroup['fromstack'].value
        except KeyError:
            # Guess based on the storage setting and original filepath
            datasetInfo.fromstack = ( datasetInfo.location == DatasetInfo.Location.ProjectInternal
                                      and ( ('?' in datasetInfo._filePath) or (os.path.pathsep in datasetInfo._filePath) ) )

        try:
            tags = vigra.AxisTags.fromJSON( infoGroup['axistags'].value )
            datasetInfo.axistags = tags
        except KeyError:
            # Old projects just have an 'axisorder' field instead of full axistags
            try:
                axisorder = infoGroup['axisorder'].value
                datasetInfo.axistags = vigra.defaultAxistags(axisorder)
            except KeyError:
                pass
        
        try:
            start, stop = map( tuple, infoGroup['subvolume_roi'].value )
            datasetInfo.subvolume_roi = (start, stop)
        except KeyError:
            pass
        
        # If the data is supposed to be in the project,
        #  check for it now.
        if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
            if not datasetInfo.datasetId in localDataGroup.keys():
                raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroup.name)

        dirty = False
        # If the data is supposed to exist outside the project, make sure it really does.
        if datasetInfo.location == DatasetInfo.Location.FileSystem and not isUrl(datasetInfo.filePath):
            pathData = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0])
            filePath = pathData.externalPath
            if not os.path.exists(filePath):
                if headless:
                    raise RuntimeError("Could not find data at " + filePath)
                filt = "Image files (" + ' '.join('*.' + x for x in OpDataSelection.SupportedExtensions) + ')'
                newpath = self.repairFile(filePath, filt)
                if pathData.internalPath is not None:
                    newpath += pathData.internalPath
                datasetInfo._filePath = getPathVariants(newpath , os.path.split(projectFilePath)[0])[0]
                dirty = True
        
        return datasetInfo, dirty