def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        # TODO: Support image stack inputs by checking for globstrings and converting to hdf5.
        input_paths = parsed_args.input_files
        input_infos = []
        for p in input_paths:
            info = DatasetInfo()
            info.location = DatasetInfo.Location.FileSystem
    
            # Convert all paths to absolute 
            # (otherwise they are relative to the project file, which probably isn't what the user meant)        
            comp = PathComponents(p)
            comp.externalPath = os.path.abspath(comp.externalPath)
            
            info.filePath = comp.totalPath()
            info.nickname = comp.filenameBase
            input_infos.append(info)

        opDataSelection = self.topLevelOperator
        opDataSelection.DatasetGroup.resize( len(input_infos) )
        for lane_index, info in enumerate(input_infos):
            # Only one dataset role in pixel classification
            opDataSelection.DatasetGroup[lane_index][0].setValue( info )
    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        input_paths = parsed_args.input_files

        # If the user doesn't want image stacks to be copied inte the project file,
        #  we generate hdf5 volumes in a temporary directory and use those files instead.        
        if parsed_args.preconvert_stacks:
            import tempfile
            input_paths = self.convertStacksToH5( input_paths, tempfile.gettempdir() )
        
        input_infos = []
        for p in input_paths:
            info = DatasetInfo()
            info.location = DatasetInfo.Location.FileSystem
    
            # Convert all paths to absolute 
            # (otherwise they are relative to the project file, which probably isn't what the user meant)        
            comp = PathComponents(p)
            comp.externalPath = os.path.abspath(comp.externalPath)
            
            info.filePath = comp.totalPath()
            info.nickname = comp.filenameBase
            input_infos.append(info)

        opDataSelection = self.topLevelOperator
        opDataSelection.DatasetGroup.resize( len(input_infos) )
        for lane_index, info in enumerate(input_infos):
            # Only one dataset role in pixel classification
            opDataSelection.DatasetGroup[lane_index][0].setValue( info )
Exemple #3
0
    def replaceWithStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted:
            return
        files = stackDlg.selectedFiles
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = "//".join(files)
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase
        # Add an underscore for each wildcard digit
        num_wildcards = len(files[-1]) - len(prefix) - len(
            os.path.splitext(files[-1])[1])
        info.nickname += "_" * num_wildcards

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = (self.guiMode == GuiMode.Normal)
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None:
            laneIndex = self._findFirstEmptyLane(roleIndex)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex + 1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex + 1)

        def importStack():
            self.guiControlSignal.emit(ControlCommand.DisableAll)
            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset(info)
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][
                        roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    return_val = [False]
                    self.handleDatasetConstraintError(info, filename, ex,
                                                      roleIndex, laneIndex,
                                                      return_val)
                    if not return_val[0]:
                        # Not successfully repaired.  Roll back the changes and give up.
                        self.topLevelOperator.DatasetGroup.resize(
                            originalNumLanes)
            finally:
                self.guiControlSignal.emit(ControlCommand.Pop)

        req = Request(importStack)
        req.notify_failed(
            partial(self.handleFailedStackLoad, files, originalNumLanes))
        req.submit()
    def addStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted :
            return
        files = stackDlg.selectedFiles
        sequence_axis = stackDlg.sequence_axis
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = os.path.pathsep.join( files )
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase
        # Add an underscore for each wildcard digit
        num_wildcards = len(files[-1]) - len(prefix) - len( os.path.splitext(files[-1])[1] )
        info.nickname += "_"*num_wildcards

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None or laneIndex == -1:
            laneIndex = len(self.topLevelOperator.DatasetGroup)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex+1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex+1)

        def importStack():
            self.parentApplet.busy = True
            self.parentApplet.appletStateUpdateRequested.emit()

            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset( info, sequence_axis )
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    return_val = [False]
                    self.handleDatasetConstraintError( info, filename, ex, roleIndex, laneIndex, return_val )
                    if not return_val[0]:
                        # Not successfully repaired.  Roll back the changes and give up.
                        self.topLevelOperator.DatasetGroup.resize(originalNumLanes)
            finally:
                self.parentApplet.busy = False
                self.parentApplet.appletStateUpdateRequested.emit()

        req = Request( importStack )
        req.notify_finished( lambda result: self.showDataset(laneIndex, roleIndex) )
        req.notify_failed( partial(self.handleFailedStackLoad, files, originalNumLanes ) )
        req.submit()
Exemple #5
0
    def _createDatasetInfo(self, roleIndex, filePath, roi):
        """
        Create a DatasetInfo object for the given filePath and roi.
        roi may be None, in which case it is ignored.
        """
        datasetInfo = DatasetInfo()

        if roi is not None:
            datasetInfo.subvolume_roi = roi

        cwd = self.topLevelOperator.WorkingDirectory.value

        absPath, relPath = getPathVariants(filePath, cwd)

        # Relative by default, unless the file is in a totally different tree from the working directory.
        if relPath is not None and len(os.path.commonprefix([cwd, absPath
                                                             ])) > 1:
            datasetInfo.filePath = relPath
        else:
            datasetInfo.filePath = absPath

        datasetInfo.nickname = PathComponents(absPath).filenameBase

        h5Exts = ['.ilp', '.h5', '.hdf5']
        if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
            datasetNames = self.getPossibleInternalPaths(absPath)
            if len(datasetNames) == 0:
                raise RuntimeError("HDF5 file %s has no image datasets" %
                                   datasetInfo.filePath)
            elif len(datasetNames) == 1:
                datasetInfo.filePath += str(datasetNames[0])
            else:
                # If exactly one of the file's datasets matches a user's previous choice, use it.
                if roleIndex not in self._default_h5_volumes:
                    self._default_h5_volumes[roleIndex] = set()
                previous_selections = self._default_h5_volumes[roleIndex]
                possible_auto_selections = previous_selections.intersection(
                    datasetNames)
                if len(possible_auto_selections) == 1:
                    datasetInfo.filePath += str(
                        list(possible_auto_selections)[0])
                else:
                    # Ask the user which dataset to choose
                    dlg = H5VolumeSelectionDlg(datasetNames, self)
                    if dlg.exec_() == QDialog.Accepted:
                        selected_index = dlg.combo.currentIndex()
                        selected_dataset = str(datasetNames[selected_index])
                        datasetInfo.filePath += selected_dataset
                        self._default_h5_volumes[roleIndex].add(
                            selected_dataset)
                    else:
                        raise DataSelectionGui.UserCancelledError()

        # Allow labels by default if this gui isn't being used for batch data.
        datasetInfo.allowLabels = (self.guiMode == GuiMode.Normal)
        return datasetInfo
    def deserializeFromHdf5(self, hdf5File, projectFilePath, headless=False):
        # Check the overall file version
        ilastikVersion = hdf5File["ilastikVersion"].value

        # This is the v0.5 import deserializer.  Don't work with 0.6 projects (or anything else).
        if ilastikVersion != 0.5:
            return

        # The 'working directory' for the purpose of constructing absolute
        #  paths from relative paths is the project file's directory.
        projectDir = os.path.split(projectFilePath)[0]
        self.topLevelOperator.WorkingDirectory.setValue(projectDir)

        # Access the top group and the info group
        try:
            #dataset = hdf5File["DataSets"]["dataItem00"]["data"]
            dataDir = hdf5File["DataSets"]
        except KeyError:
            # If our group (or subgroup) doesn't exist, then make sure the operator is empty
            self.topLevelOperator.DatasetGroup.resize(0)
            return

        self.topLevelOperator.DatasetGroup.resize(len(dataDir))
        for index, (datasetDirName,
                    datasetDir) in enumerate(sorted(dataDir.items())):
            datasetInfo = DatasetInfo()

            # We'll set up the link to the dataset in the old project file,
            #  but we'll set the location to ProjectInternal so that it will
            #  be copied to the new file when the project is saved.
            datasetInfo.location = DatasetInfo.Location.ProjectInternal

            # Some older versions of ilastik 0.5 stored the data in tzyxc order.
            # Some power-users can enable a command-line flag that tells us to
            #  transpose the data back to txyzc order when we import the old project.
            default_axis_order = ilastik.utility.globals.ImportOptions.default_axis_order
            if default_axis_order is not None:
                import warnings
                warnings.warn(
                    "Using a strange axis order to import ilastik 0.5 projects: {}"
                    .format(default_axis_order))
                datasetInfo.axistags = vigra.defaultAxistags(
                    default_axis_order)

            # Write to the 'private' members to avoid resetting the dataset id
            totalDatasetPath = str(projectFilePath + '/DataSets/' +
                                   datasetDirName + '/data')
            datasetInfo._filePath = totalDatasetPath
            datasetInfo._datasetId = datasetDirName  # Use the old dataset name as the new dataset id
            datasetInfo.nickname = "{} (imported from v0.5)".format(
                datasetDirName)

            # Give the new info to the operator
            self.topLevelOperator.DatasetGroup[index][0].setValue(datasetInfo)
    def _createDatasetInfo(self, roleIndex, filePath, roi):
        """
        Create a DatasetInfo object for the given filePath and roi.
        roi may be None, in which case it is ignored.
        """
        datasetInfo = DatasetInfo()
        
        if roi is not None:
            datasetInfo.subvolume_roi = roi
        
        cwd = self.topLevelOperator.WorkingDirectory.value
        
        absPath, relPath = getPathVariants(filePath, cwd)
        
        # Relative by default, unless the file is in a totally different tree from the working directory.
        if relPath is not None and len(os.path.commonprefix([cwd, absPath])) > 1:
            datasetInfo.filePath = relPath
        else:
            datasetInfo.filePath = absPath
            
        datasetInfo.nickname = PathComponents(absPath).filenameBase

        h5Exts = ['.ilp', '.h5', '.hdf5']
        if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
            datasetNames = self.getPossibleInternalPaths( absPath )
            if len(datasetNames) == 0:
                raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)
            elif len(datasetNames) == 1:
                datasetInfo.filePath += str(datasetNames[0])
            else:
                # If exactly one of the file's datasets matches a user's previous choice, use it.
                if roleIndex not in self._default_h5_volumes:
                    self._default_h5_volumes[roleIndex] = set()
                previous_selections = self._default_h5_volumes[roleIndex]
                possible_auto_selections = previous_selections.intersection(datasetNames)
                if len(possible_auto_selections) == 1:
                    datasetInfo.filePath += str(list(possible_auto_selections)[0])
                else:
                    # Ask the user which dataset to choose
                    dlg = H5VolumeSelectionDlg(datasetNames, self)
                    if dlg.exec_() == QDialog.Accepted:
                        selected_index = dlg.combo.currentIndex()
                        selected_dataset = str(datasetNames[selected_index])
                        datasetInfo.filePath += selected_dataset
                        self._default_h5_volumes[roleIndex].add( selected_dataset )
                    else:
                        raise DataSelectionGui.UserCancelledError()

        # Allow labels by default if this gui isn't being used for batch data.
        datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
        return datasetInfo
    def deserializeFromHdf5(self, hdf5File, projectFilePath, headless = False):
        # Check the overall file version
        ilastikVersion = hdf5File["ilastikVersion"].value

        # This is the v0.5 import deserializer.  Don't work with 0.6 projects (or anything else).
        if ilastikVersion != 0.5:
            return

        # The 'working directory' for the purpose of constructing absolute 
        #  paths from relative paths is the project file's directory.
        projectDir = os.path.split(projectFilePath)[0]
        self.topLevelOperator.WorkingDirectory.setValue( projectDir )

        # Access the top group and the info group
        try:
            #dataset = hdf5File["DataSets"]["dataItem00"]["data"]
            dataDir = hdf5File["DataSets"]
        except KeyError:
            # If our group (or subgroup) doesn't exist, then make sure the operator is empty
            self.topLevelOperator.DatasetGroup.resize( 0 )
            return
        
        self.topLevelOperator.DatasetGroup.resize( len(dataDir) )
        for index, (datasetDirName, datasetDir) in enumerate( sorted(dataDir.items()) ):
            datasetInfo = DatasetInfo()

            # We'll set up the link to the dataset in the old project file, 
            #  but we'll set the location to ProjectInternal so that it will 
            #  be copied to the new file when the project is saved.    
            datasetInfo.location = DatasetInfo.Location.ProjectInternal
            
            # Some older versions of ilastik 0.5 stored the data in tzyxc order.
            # Some power-users can enable a command-line flag that tells us to 
            #  transpose the data back to txyzc order when we import the old project.
            default_axis_order = ilastik.utility.globals.ImportOptions.default_axis_order
            if default_axis_order is not None:
                import warnings
                warnings.warn( "Using a strange axis order to import ilastik 0.5 projects: {}".format( default_axis_order ) )
                datasetInfo.axistags = vigra.defaultAxistags(default_axis_order)
            
            # Write to the 'private' members to avoid resetting the dataset id
            totalDatasetPath = projectFilePath + '/DataSets/' + datasetDirName + '/data'
            datasetInfo._filePath = totalDatasetPath
            datasetInfo._datasetId = datasetDirName # Use the old dataset name as the new dataset id
            datasetInfo.nickname = "{} (imported from v0.5)".format( datasetDirName )
            
            # Give the new info to the operator
            self.topLevelOperator.DatasetGroup[index][0].setValue(datasetInfo)
    def replaceWithStack(self, roleIndex, laneIndex):
        """
        The user clicked the "Import Stack Files" button.
        """
        stackDlg = StackFileSelectionWidget(self)
        stackDlg.exec_()
        if stackDlg.result() != QDialog.Accepted :
            return
        files = stackDlg.selectedFiles
        if len(files) == 0:
            return

        info = DatasetInfo()
        info.filePath = "//".join( files )
        prefix = os.path.commonprefix(files)
        info.nickname = PathComponents(prefix).filenameBase + "..."

        # Allow labels by default if this gui isn't being used for batch data.
        info.allowLabels = ( self.guiMode == GuiMode.Normal )
        info.fromstack = True

        originalNumLanes = len(self.topLevelOperator.DatasetGroup)

        if laneIndex is None:
            laneIndex = self._findFirstEmptyLane(roleIndex)
        if len(self.topLevelOperator.DatasetGroup) < laneIndex+1:
            self.topLevelOperator.DatasetGroup.resize(laneIndex+1)

        def importStack():
            self.guiControlSignal.emit( ControlCommand.DisableAll )
            # Serializer will update the operator for us, which will propagate to the GUI.
            try:
                self.serializer.importStackAsLocalDataset( info )
                try:
                    self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue(info)
                except DatasetConstraintError as ex:
                    # Give the user a chance to repair the problem.
                    filename = files[0] + "\n...\n" + files[-1]
                    if not self.handleDatasetConstraintError( info, filename, ex, roleIndex, laneIndex ):
                        self.topLevelOperator.DatasetGroup.resize(originalNumLanes)
            finally:
                self.guiControlSignal.emit( ControlCommand.Pop )

        req = Request( importStack )
        req.notify_failed( partial(self.handleFailedStackLoad, files, originalNumLanes ) )
        req.submit()
Exemple #10
0
    def create_default_headless_dataset_info(cls, filepath):
        """
        filepath may be a globstring or a full hdf5 path+dataset 
        """
        comp = PathComponents(filepath)
        nickname = comp.filenameBase
        
        # Remove globstring syntax.
        if '*' in nickname:
            nickname = nickname.replace('*', '')
        if os.path.pathsep in nickname:
            nickname = PathComponents(nickname.split(os.path.pathsep)[0]).fileNameBase

        info = DatasetInfo()
        info.location = DatasetInfo.Location.FileSystem
        info.nickname = nickname
        info.filePath = filepath
        # Convert all (non-url) paths to absolute 
        # (otherwise they are relative to the project file, which probably isn't what the user meant)
        if not isUrl(filepath):
            comp.externalPath = os.path.abspath(comp.externalPath)
            info.filePath = comp.totalPath()
        return info
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None or startingLane == -1:
            startingLane = len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane+len(fileNames)-1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            max_files = len(self.topLevelOperator.DatasetGroup) - \
                    startingLane
            if len(fileNames) > max_files:
                msg = "You selected {num_selected} files for {num_slots} "\
                      "slots. To add new files use the 'Add new...' option "\
                      "in the context menu or the button in the last row."\
                              .format(num_selected=len(fileNames),
                                      num_slots=max_files)
                QMessageBox.critical( self, "Too many files", msg )
                return
            endingLane = min(startingLane+len(fileNames)-1,
                    len(self.topLevelOperator.DatasetGroup))
            
        if self._max_lanes and endingLane >= self._max_lanes:
            msg = "You may not add more than {} file(s) to this workflow.  Please try again.".format( self._max_lanes )
            QMessageBox.critical( self, "Too many files", msg )
            return

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value
            
            absPath, relPath = getPathVariants(filePath, cwd)
            
            # Relative by default, unless the file is in a totally different tree from the working directory.
            if relPath is not None and len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath
                
            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths( absPath )
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)
            
        if len( opTop.DatasetGroup ) < endingLane+1:
            opTop.DatasetGroup.resize( endingLane+1 )
        for laneIndex, info in zip(range(startingLane, endingLane+1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue( info )
            except DatasetConstraintError as ex:
                return_val = [False]
                # Give the user a chance to fix the problem
                self.handleDatasetConstraintError(info, info.filePath, ex, roleIndex, laneIndex, return_val)
                if not return_val[0]:
                    # Not successfully repaired.  Roll back the changes and give up.
                    opTop.DatasetGroup.resize( originalSize )
                    break
            except OpDataSelection.InvalidDimensionalityError as ex:
                    opTop.DatasetGroup.resize( originalSize )
                    QMessageBox.critical( self, "Dataset has different dimensionality", ex.message )
                    break
            except:
                QMessageBox.critical( self, "Dataset Load Error", "Wasn't able to load your dataset into the workflow.  See console for details." )
                opTop.DatasetGroup.resize( originalSize )
                raise

        # If we succeeded in adding all images, show the first one.
        if laneIndex == endingLane:
            self.showDataset(startingLane, roleIndex)

        # Notify the workflow that something that could affect applet readyness has occurred.
        self.parentApplet.appletStateUpdateRequested.emit()

        self.updateInternalPathVisiblity()
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None:        
            startingLane = self._findFirstEmptyLane(roleIndex)
            endingLane = startingLane+len(fileNames)-1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane+len(fileNames)-1

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value
            
            if not areOnSameDrive(filePath,cwd):
                QMessageBox.critical(self, "Drive Error","Data must be on same drive as working directory.")
                return
                
            absPath, relPath = getPathVariants(filePath, cwd)
            
            # Relative by default, unless the file is in a totally different tree from the working directory.
            if len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath
                
            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths( absPath )
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" % datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = ( self.guiMode == GuiMode.Normal )
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)
            
        if len( opTop.DatasetGroup ) < endingLane+1:
            opTop.DatasetGroup.resize( endingLane+1 )
        for laneIndex, info in zip(range(startingLane, endingLane+1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][roleIndex].setValue( info )
            except DatasetConstraintError as ex:
                # Give the user a chance to fix the problem
                if not self.handleDatasetConstraintError(info, info.filePath, ex, roleIndex, laneIndex):
                    opTop.DatasetGroup.resize( originalSize )
                    break
            except:
                QMessageBox.critical( self, "Dataset Load Error", "Wasn't able to load your dataset into the workflow.  See console for details." )
                opTop.DatasetGroup.resize( originalSize )
                raise
        self.updateInternalPathVisiblity()
    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        role_names = self.topLevelOperator.DatasetRoles.value
        role_paths = collections.OrderedDict()
        if role_names:
            for role_index, role_name in enumerate(role_names):
                arg_name = self._role_name_to_arg_name(role_name)
                input_paths = getattr(parsed_args, arg_name)
                role_paths[role_index] = input_paths

        if parsed_args.input_files:
            # We allow the file list to go to the 'default' role, but only if no other roles were explicitly configured.
            for role_index, input_paths in role_paths.items():
                if input_paths:
                    # FIXME: This error message could be more helpful.
                    role_args = map(self._role_name_to_arg_name, role_names)
                    role_args = map(lambda s: '--' + s, role_args)
                    role_args_str = ", ".join(role_args)
                    raise Exception(
                        "Invalid command line arguments: All roles must be configured explicitly.\n"
                        "Use the following flags to specify which files are matched with which inputs:\n"
                        + role_args_str)
            role_paths = {0: parsed_args.input_files}

        for role_index, input_paths in role_paths.items():
            # If the user doesn't want image stacks to be copied into the project file,
            #  we generate hdf5 volumes in a temporary directory and use those files instead.
            if parsed_args.preconvert_stacks:
                import tempfile
                input_paths = self.convertStacksToH5(input_paths,
                                                     tempfile.gettempdir())

            input_infos = []
            for p in input_paths:
                info = DatasetInfo()
                info.location = DatasetInfo.Location.FileSystem
                info.filePath = p

                comp = PathComponents(p)

                # Convert all (non-url) paths to absolute
                # (otherwise they are relative to the project file, which probably isn't what the user meant)
                if not isUrl(p):
                    comp.externalPath = os.path.abspath(comp.externalPath)
                    info.filePath = comp.totalPath()
                info.nickname = comp.filenameBase

                # Remove globstring syntax.
                if '*' in info.nickname:
                    info.nickname = info.nickname.replace('*', '')
                if os.path.pathsep in info.nickname:
                    info.nickname = PathComponents(
                        info.nickname.split(os.path.pathsep)[0]).fileNameBase
                input_infos.append(info)

            opDataSelection = self.topLevelOperator
            existing_lanes = len(opDataSelection.DatasetGroup)
            opDataSelection.DatasetGroup.resize(
                max(len(input_infos), existing_lanes))
            for lane_index, info in enumerate(input_infos):
                opDataSelection.DatasetGroup[lane_index][role_index].setValue(
                    info)

            need_warning = False
            for lane_index in range(len(input_infos)):
                output_slot = opDataSelection.ImageGroup[lane_index][
                    role_index]
                if output_slot.meta.prefer_2d:
                    need_warning = True
                    break

            if need_warning:
                logger.warn(
                    "*******************************************************************************************"
                )
                logger.warn(
                    "Some of your input data is stored in a format that is not efficient for 3D access patterns."
                )
                logger.warn(
                    "Performance may suffer as a result.  For best performance, use a chunked HDF5 volume."
                )
                logger.warn(
                    "*******************************************************************************************"
                )
    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        role_names = self.topLevelOperator.DatasetRoles.value
        role_paths = collections.OrderedDict()
        if role_names:
            for role_index, role_name in enumerate(role_names):
                arg_name = self._role_name_to_arg_name(role_name)
                input_paths = getattr(parsed_args, arg_name)
                role_paths[role_index] = input_paths

        if parsed_args.input_files:
            # We allow the file list to go to the 'default' role, but only if no other roles were explicitly configured.
            for role_index, input_paths in role_paths.items():
                if input_paths:
                    # FIXME: This error message could be more helpful.
                    role_args = map( self._role_name_to_arg_name, role_names )
                    role_args = map( lambda s: '--' + s, role_args )
                    role_args_str = ", ".join( role_args )
                    raise Exception("Invalid command line arguments: All roles must be configured explicitly.\n"
                                    "Use the following flags to specify which files are matched with which inputs:\n"
                                    + role_args_str )
            role_paths = { 0 : parsed_args.input_files }

        for role_index, input_paths in role_paths.items():
            # If the user doesn't want image stacks to be copied into the project file,
            #  we generate hdf5 volumes in a temporary directory and use those files instead.        
            if parsed_args.preconvert_stacks:
                import tempfile
                input_paths = self.convertStacksToH5( input_paths, tempfile.gettempdir() )
            
            input_infos = []
            for p in input_paths:
                info = DatasetInfo()
                info.location = DatasetInfo.Location.FileSystem
                info.filePath = p
    
                comp = PathComponents(p)
    
                # Convert all (non-url) paths to absolute 
                # (otherwise they are relative to the project file, which probably isn't what the user meant)        
                if not isUrl(p):
                    comp.externalPath = os.path.abspath(comp.externalPath)
                    info.filePath = comp.totalPath()
                info.nickname = comp.filenameBase
                
                # Remove globstring syntax.
                if '*' in info.nickname:
                    info.nickname = info.nickname.replace('*', '')
                if os.path.pathsep in info.nickname:
                    info.nickname = PathComponents(info.nickname.split(os.path.pathsep)[0]).fileNameBase
                input_infos.append(info)
    
            opDataSelection = self.topLevelOperator
            existing_lanes = len(opDataSelection.DatasetGroup)
            opDataSelection.DatasetGroup.resize( max(len(input_infos), existing_lanes) )
            for lane_index, info in enumerate(input_infos):
                opDataSelection.DatasetGroup[lane_index][role_index].setValue( info )
            
            need_warning = False
            for lane_index in range(len(input_infos)):
                output_slot = opDataSelection.ImageGroup[lane_index][role_index]
                if output_slot.meta.prefer_2d:
                    need_warning = True
                    break

            if need_warning:
                logger.warn("*******************************************************************************************")
                logger.warn("Some of your input data is stored in a format that is not efficient for 3D access patterns.")
                logger.warn("Performance may suffer as a result.  For best performance, use a chunked HDF5 volume.")                
                logger.warn("*******************************************************************************************")
    def _readDatasetInfo(self, infoGroup, localDataGroup, projectFilePath, headless):
        # Unready datasets are represented with an empty group.
        if len( infoGroup ) == 0:
            return None, False
        datasetInfo = DatasetInfo()

        # Make a reverse-lookup of the location storage strings
        LocationLookup = { v:k for k,v in self.LocationStrings.items() }
        datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
        
        # Write to the 'private' members to avoid resetting the dataset id
        datasetInfo._filePath = infoGroup['filePath'].value
        datasetInfo._datasetId = infoGroup['datasetId'].value

        try:
            datasetInfo.allowLabels = infoGroup['allowLabels'].value
        except KeyError:
            pass
        
        try:
            datasetInfo.drange = tuple( infoGroup['drange'].value )
        except KeyError:
            pass
        
        try:
            datasetInfo.nickname = infoGroup['nickname'].value
        except KeyError:
            datasetInfo.nickname = PathComponents(datasetInfo.filePath).filenameBase
        
        try:
            tags = vigra.AxisTags.fromJSON( infoGroup['axistags'].value )
            datasetInfo.axistags = tags
        except KeyError:
            # Old projects just have an 'axisorder' field instead of full axistags
            try:
                axisorder = infoGroup['axisorder'].value
                datasetInfo.axistags = vigra.defaultAxistags(axisorder)
            except KeyError:
                pass
        
        # If the data is supposed to be in the project,
        #  check for it now.
        if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
            if not datasetInfo.datasetId in localDataGroup.keys():
                raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroup.name)

        dirty = False
        # If the data is supposed to exist outside the project, make sure it really does.
        if datasetInfo.location == DatasetInfo.Location.FileSystem and not isUrl(datasetInfo.filePath):
            pathData = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0])
            filePath = pathData.externalPath
            if not os.path.exists(filePath):
                if headless:
                    raise RuntimeError("Could not find data at " + filePath)
                filt = "Image files (" + ' '.join('*.' + x for x in OpDataSelection.SupportedExtensions) + ')'
                newpath = self.repairFile(filePath, filt)
                if pathData.internalPath is not None:
                    newpath += pathData.internalPath
                datasetInfo._filePath = getPathVariants(newpath , os.path.split(projectFilePath)[0])[0]
                dirty = True
        
        return datasetInfo, dirty
    def _readDatasetInfo(self, infoGroup, localDataGroup, projectFilePath, headless):
        # Unready datasets are represented with an empty group.
        if len( infoGroup ) == 0:
            return None, False
        datasetInfo = DatasetInfo()

        # Make a reverse-lookup of the location storage strings
        LocationLookup = { v:k for k,v in self.LocationStrings.items() }
        datasetInfo.location = LocationLookup[ str(infoGroup['location'].value) ]
        
        # Write to the 'private' members to avoid resetting the dataset id
        datasetInfo._filePath = infoGroup['filePath'].value
        datasetInfo._datasetId = infoGroup['datasetId'].value

        try:
            datasetInfo.allowLabels = infoGroup['allowLabels'].value
        except KeyError:
            pass
        
        try:
            datasetInfo.drange = tuple( infoGroup['drange'].value )
        except KeyError:
            pass
        
        try:
            datasetInfo.nickname = infoGroup['nickname'].value
        except KeyError:
            datasetInfo.nickname = PathComponents(datasetInfo.filePath).filenameBase
        
        try:
            datasetInfo.fromstack = infoGroup['fromstack'].value
        except KeyError:
            # Guess based on the storage setting and original filepath
            datasetInfo.fromstack = ( datasetInfo.location == DatasetInfo.Location.ProjectInternal
                                      and ( ('?' in datasetInfo._filePath) or (os.path.pathsep in datasetInfo._filePath) ) )

        try:
            tags = vigra.AxisTags.fromJSON( infoGroup['axistags'].value )
            datasetInfo.axistags = tags
        except KeyError:
            # Old projects just have an 'axisorder' field instead of full axistags
            try:
                axisorder = infoGroup['axisorder'].value
                datasetInfo.axistags = vigra.defaultAxistags(axisorder)
            except KeyError:
                pass
        
        try:
            start, stop = map( tuple, infoGroup['subvolume_roi'].value )
            datasetInfo.subvolume_roi = (start, stop)
        except KeyError:
            pass
        
        # If the data is supposed to be in the project,
        #  check for it now.
        if datasetInfo.location == DatasetInfo.Location.ProjectInternal:
            if not datasetInfo.datasetId in localDataGroup.keys():
                raise RuntimeError("Corrupt project file.  Could not find data for " + infoGroup.name)

        dirty = False
        # If the data is supposed to exist outside the project, make sure it really does.
        if datasetInfo.location == DatasetInfo.Location.FileSystem and not isUrl(datasetInfo.filePath):
            pathData = PathComponents( datasetInfo.filePath, os.path.split(projectFilePath)[0])
            filePath = pathData.externalPath
            if not os.path.exists(filePath):
                if headless:
                    raise RuntimeError("Could not find data at " + filePath)
                filt = "Image files (" + ' '.join('*.' + x for x in OpDataSelection.SupportedExtensions) + ')'
                newpath = self.repairFile(filePath, filt)
                if pathData.internalPath is not None:
                    newpath += pathData.internalPath
                datasetInfo._filePath = getPathVariants(newpath , os.path.split(projectFilePath)[0])[0]
                dirty = True
        
        return datasetInfo, dirty
Exemple #17
0
    def addFileNames(self, fileNames, roleIndex, startingLane=None):
        """
        Add the given filenames to both the GUI table and the top-level operator inputs.
        If startingLane is None, the filenames will be *appended* to the role's list of files.
        """
        infos = []

        if startingLane is None:
            startingLane = self._findFirstEmptyLane(roleIndex)
            endingLane = startingLane + len(fileNames) - 1
        else:
            assert startingLane < len(self.topLevelOperator.DatasetGroup)
            endingLane = startingLane + len(fileNames) - 1

        if self._max_lanes and endingLane >= self._max_lanes:
            msg = "You may not add more than {} file(s) to this workflow.  Please try again.".format(
                self._max_lanes)
            QMessageBox.critical(self, "Too many files", msg)
            return

        # Assign values to the new inputs we just allocated.
        # The GUI will be updated by callbacks that are listening to slot changes
        for i, filePath in enumerate(fileNames):
            datasetInfo = DatasetInfo()
            cwd = self.topLevelOperator.WorkingDirectory.value

            if not areOnSameDrive(filePath, cwd):
                QMessageBox.critical(
                    self, "Drive Error",
                    "Data must be on same drive as working directory.")
                return

            absPath, relPath = getPathVariants(filePath, cwd)

            # Relative by default, unless the file is in a totally different tree from the working directory.
            if len(os.path.commonprefix([cwd, absPath])) > 1:
                datasetInfo.filePath = relPath
            else:
                datasetInfo.filePath = absPath

            datasetInfo.nickname = PathComponents(absPath).filenameBase

            h5Exts = ['.ilp', '.h5', '.hdf5']
            if os.path.splitext(datasetInfo.filePath)[1] in h5Exts:
                datasetNames = self.getPossibleInternalPaths(absPath)
                if len(datasetNames) > 0:
                    datasetInfo.filePath += str(datasetNames[0])
                else:
                    raise RuntimeError("HDF5 file %s has no image datasets" %
                                       datasetInfo.filePath)

            # Allow labels by default if this gui isn't being used for batch data.
            datasetInfo.allowLabels = (self.guiMode == GuiMode.Normal)
            infos.append(datasetInfo)

        # if no exception was thrown, set up the operator now
        opTop = self.topLevelOperator
        originalSize = len(opTop.DatasetGroup)

        if len(opTop.DatasetGroup) < endingLane + 1:
            opTop.DatasetGroup.resize(endingLane + 1)
        for laneIndex, info in zip(range(startingLane, endingLane + 1), infos):
            try:
                self.topLevelOperator.DatasetGroup[laneIndex][
                    roleIndex].setValue(info)
            except DatasetConstraintError as ex:
                return_val = [False]
                # Give the user a chance to fix the problem
                self.handleDatasetConstraintError(info, info.filePath, ex,
                                                  roleIndex, laneIndex,
                                                  return_val)
                if not return_val[0]:
                    # Not successfully repaired.  Roll back the changes and give up.
                    opTop.DatasetGroup.resize(originalSize)
                    break
            except OpDataSelection.InvalidDimensionalityError as ex:
                opTop.DatasetGroup.resize(originalSize)
                QMessageBox.critical(self,
                                     "Dataset has different dimensionality",
                                     ex.message)
                break
            except:
                QMessageBox.critical(
                    self, "Dataset Load Error",
                    "Wasn't able to load your dataset into the workflow.  See console for details."
                )
                opTop.DatasetGroup.resize(originalSize)
                raise
        self.updateInternalPathVisiblity()