# compute which pixels are in the wanted range cv.cvInRangeS (hsv, hsv_min, hsv_max, mask) # extract the hue from the hsv array cv.cvSplit (hsv, hue, None, None, None) # select the rectangle of interest in the hue/mask arrays hue_roi = cv.cvGetSubRect (hue, selection) mask_roi = cv.cvGetSubRect (mask, selection) # it's time to compute the histogram cv.cvCalcHist (hue_roi, hist, 0, mask_roi) # extract the min and max value of the histogram min_val, max_val = cv.cvGetMinMaxHistValue (hist, None, None) # compute the scale factor if max_val > 0: scale = 255. / max_val else: scale = 0. # scale the histograms cv.cvConvertScale (hist.bins, hist.bins, scale, 0) # clear the histogram image cv.cvSetZero (histimg) # compute the width for each bin do display bin_w = histimg.width / hdims
# compute which pixels are in the wanted range cv.cvInRangeS (hsv, hsv_min, hsv_max, mask) # extract the hue from the hsv array cv.cvSplit (hsv, hue, None, None, None) # select the rectangle of interest in the hue/mask arrays hue_roi = cv.cvGetSubRect (hue, selection) mask_roi = cv.cvGetSubRect (mask, selection) # it's time to compute the histogram cv.cvCalcHist (hue_roi, hist, 0, mask_roi) # extract the min and max value of the histogram min_val, max_val, min_idx, max_idx = cv.cvGetMinMaxHistValue (hist) # compute the scale factor if max_val > 0: scale = 255. / max_val else: scale = 0. # scale the histograms cv.cvConvertScale (hist.bins, hist.bins, scale, 0) # clear the histogram image cv.cvSetZero (histimg) # compute the width for each bin do display bin_w = histimg.width / hdims
# compute which pixels are in the wanted range cv.cvInRangeS(hsv, hsv_min, hsv_max, mask) # extract the hue from the hsv array cv.cvSplit(hsv, hue, None, None, None) # select the rectangle of interest in the hue/mask arrays hue_roi = cv.cvGetSubRect(hue, selection) mask_roi = cv.cvGetSubRect(mask, selection) # it's time to compute the histogram cv.cvCalcHist(hue_roi, hist, 0, mask_roi) # extract the min and max value of the histogram min_val, max_val, min_idx, max_idx = cv.cvGetMinMaxHistValue(hist) # compute the scale factor if max_val > 0: scale = 255. / max_val else: scale = 0. # scale the histograms cv.cvConvertScale(hist.bins, hist.bins, scale, 0) # clear the histogram image cv.cvSetZero(histimg) # compute the width for each bin do display bin_w = histimg.width / hdims
# compute which pixels are in the wanted range cv.cvInRangeS(hsv, hsv_min, hsv_max, mask) # extract the hue from the hsv array cv.cvSplit(hsv, hue, None, None, None) # select the rectangle of interest in the hue/mask arrays hue_roi = cv.cvGetSubRect(hue, selection) mask_roi = cv.cvGetSubRect(mask, selection) # it's time to compute the histogram cv.cvCalcHist(hue_roi, hist, 0, mask_roi) # extract the min and max value of the histogram min_val, max_val = cv.cvGetMinMaxHistValue(hist, None, None) # compute the scale factor if max_val > 0: scale = 255. / max_val else: scale = 0. # scale the histograms cv.cvConvertScale(hist.bins, hist.bins, scale, 0) # clear the histogram image cv.cvSetZero(histimg) # compute the width for each bin do display bin_w = histimg.width / hdims