def test_dataframe_partitioning_2(): # dataframe partition with multi-index grouping with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) grouper = sn.clamp(data[['sex', 'educ']], categories=[['0', '1'], [str(i) for i in range(14)]], null_value='-1') partitioned = sn.partition(data, by=grouper) sn.union( { key: sn.dp_count(partitioned[key], privacy_usage={"epsilon": 0.5}) for key in partitioned.partition_keys }, flatten=False) print( sn.union({ key: sn.dp_mean( sn.to_float(partitioned[key]['income']), implementation="plug-in", # data_rows=100, data_lower=0., data_upper=200_000., privacy_usage={"epsilon": 0.5}) for key in partitioned.partition_keys }))
def test_map_1(): # map a count over all dataframe partitions with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) partitioned = sn.partition(data, by=sn.to_bool(data['sex'], true_label="1")) counts = sn.dp_count(partitioned, privacy_usage={"epsilon": 0.5}) print(counts.value) print(analysis.privacy_usage)
def test_dp_count(run=True): with sn.Analysis() as analysis: dataset_pums = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) count = sn.dp_count(dataset_pums['sex'] == '1', privacy_usage={'epsilon': 0.5}) if run: analysis.release() print(count.value) return analysis
def test_map_2(): # map a count over a large number of tuple partitions of dataframes with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) grouper = sn.clamp(data[['sex', 'educ']], categories=[['0', '1'], [str(i) for i in range(14)]], null_value='-1') partitioned = sn.partition(data, by=grouper) counts = sn.dp_count(partitioned, privacy_usage={"epsilon": 0.5}) print(counts.value) print(analysis.privacy_usage)
def test_groupby_1(): with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") partitioned = sn.partition(data[['educ', 'income']], by=is_male) counts = { cat: sn.dp_count(partitioned[cat], privacy_usage={'epsilon': 0.1}) for cat in is_male.categories } # analysis.plot() analysis.release() print(analysis.privacy_usage) print({cat: counts[cat].value for cat in counts})
def test_map_4(): # chain multiple mapped releases over a partition with implicit preprocessing with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) partitioned = sn.partition(sn.to_float(data['age']), by=sn.to_bool(data['sex'], true_label="1")) counts = sn.row_max( 1, sn.dp_count(partitioned, privacy_usage={'epsilon': 0.5})) means = sn.dp_mean(partitioned, privacy_usage={'epsilon': 0.7}, data_rows=counts, data_lower=0., data_upper=15.) print("counts:", counts.value) print("means:", means.value) print(analysis.privacy_usage)
def analyze(data): educ = sn.clamp(sn.to_int(sn.index(data, indices=0), lower=0, upper=15), categories=list(range(15)), null_value=-1) income = sn.index(data, indices=1) repartitioned = sn.partition(income, by=educ) inner_count = {} inner_means = {} for key in [5, 8, 12]: educ_level_part = repartitioned[key] inner_count[key] = sn.dp_count(educ_level_part, privacy_usage={"epsilon": 0.4}) inner_means[key] = sn.mean( sn.resize(educ_level_part, number_rows=sn.row_min(1, inner_count[key] * 4 // 5))) return sn.union(inner_means), sn.union(inner_count)
def test_groupby_2(): with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) is_male = sn.to_bool(data['sex'], true_label="1") partitioned = sn.partition(sn.to_float(data[['educ', 'income']]), by=is_male) counts = { True: sn.dp_count(partitioned[True], privacy_usage={'epsilon': 0.1}), False: sn.dp_mean(partitioned[False], privacy_usage={'epsilon': 0.1}, data_rows=500, data_lower=[0., 0.], data_upper=[15., 200_000.]) } # analysis.plot() analysis.release() print(analysis.privacy_usage) print({cat: counts[cat].value for cat in counts})
def create_dicts(data, non_income_data, plausible_variable_combinations): count_dict = dict() priv_count_dict = dict() mean_income_dict = dict() priv_mean_income_dict = dict() median_income_dict = dict() priv_median_income_dict = dict() min_income_dict = dict() priv_min_income_dict = dict() max_income_dict = dict() priv_max_income_dict = dict() # get number of data elements with each set of variable values for i, combination in enumerate(plausible_variable_combinations): # print('run {0} of {1}'.format(i+1, len(plausible_variable_combinations))) if len(combination) == 1: dt = data[non_income_data[combination[0]] == 1] elif len(combination) == 2: dt = data[(non_income_data[combination[0]] == 1) & (non_income_data[combination[1]] == 1)] elif len(combination) == 3: dt = data[(non_income_data[combination[0]] == 1) & (non_income_data[combination[1]] == 1) & (non_income_data[combination[2]] == 1)] elif len(combination) == 4: dt = data[(non_income_data[combination[0]] == 1) & (non_income_data[combination[1]] == 1) & (non_income_data[combination[2]] == 1) & (non_income_data[combination[3]] == 1)] elif len(combination) == 5: dt = data[(non_income_data[combination[0]] == 1) & (non_income_data[combination[1]] == 1) & (non_income_data[combination[2]] == 1) & (non_income_data[combination[3]] == 1) & (non_income_data[combination[4]] == 1)] count_dict['__'.join(combination)] = dt.shape[0] mean_income_dict['__'.join(combination)] = np.mean(dt['income']) median_income_dict['__'.join(combination)] = np.median(dt['income']) min_income_dict['__'.join(combination)] = np.min(dt['income']) max_income_dict['__'.join(combination)] = np.max(dt['income']) with sn.Analysis() as analysis: # load data priv_data = sn.Dataset(value=dt['income']) # estimate sample size count = sn.dp_count(priv_data, privacy_usage={'epsilon': .05}) # preprocess data priv_data = sn.resize(sn.to_float(priv_data), number_columns=1, number_rows=sn.row_max(1, count), lower=0., upper=100_000.) priv_data = sn.impute(sn.clamp(priv_data, lower=0., upper=100_000.)) # get mean mean = sn.dp_mean(priv_data, privacy_usage={'epsilon': 0.1}) # get median median = sn.dp_median(priv_data, privacy_usage={'epsilon': 0.1}) # get min _min = sn.dp_minimum(priv_data, privacy_usage={'epsilon': 0.1}) # get max _max = sn.dp_maximum(priv_data, privacy_usage={'epsilon': 0.1}) analysis.release() priv_count_dict['__'.join(combination)] = max(0, count.value) priv_mean_income_dict['__'.join(combination)] = min( max(0, mean.value), 100_000) priv_median_income_dict['__'.join(combination)] = min( max(0, median.value), 100_000) priv_min_income_dict['__'.join(combination)] = min( max(0, _min.value), 100_000) priv_max_income_dict['__'.join(combination)] = min( max(0, _max.value), 100_000) return (count_dict, priv_count_dict, mean_income_dict, priv_mean_income_dict, median_income_dict, priv_median_income_dict, min_income_dict, priv_min_income_dict, max_income_dict, priv_max_income_dict)
def test_dp_linear_stats(run=True): with sn.Analysis() as analysis: dataset_pums = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age = dataset_pums['age'] analysis.release() num_records = sn.dp_count(age, privacy_usage={'epsilon': .5}, lower=0, upper=10000) analysis.release() print("number of records:", num_records.value) vars = sn.to_float(dataset_pums[["age", "income"]]) covariance = sn.dp_covariance(data=vars, privacy_usage={'epsilon': .5}, data_lower=[0., 0.], data_upper=[150., 150000.], data_rows=num_records) print("covariance released") num_means = sn.dp_mean(data=vars, privacy_usage={'epsilon': .5}, data_lower=[0., 0.], data_upper=[150., 150000.], data_rows=num_records) analysis.release() print("covariance:\n", covariance.value) print("means:\n", num_means.value) age = sn.to_float(age) age_variance = sn.dp_variance(age, privacy_usage={'epsilon': .5}, data_lower=0., data_upper=150., data_rows=num_records) analysis.release() print("age variance:", age_variance.value) # If I clamp, impute, resize, then I can reuse their properties for multiple statistics clamped_age = sn.clamp(age, lower=0., upper=100.) imputed_age = sn.impute(clamped_age) preprocessed_age = sn.resize(imputed_age, number_rows=num_records) # properties necessary for mean are statically known mean = sn.dp_mean(preprocessed_age, privacy_usage={'epsilon': .5}) # properties necessary for variance are statically known variance = sn.dp_variance(preprocessed_age, privacy_usage={'epsilon': .5}) # sum doesn't need n, so I pass the data in before resizing age_sum = sn.dp_sum(imputed_age, privacy_usage={'epsilon': .5}) # mean with lower, upper properties propagated up from prior bounds transformed_mean = sn.dp_mean(-(preprocessed_age + 2.), privacy_usage={'epsilon': .5}) analysis.release() print("age transformed mean:", transformed_mean.value) # releases may be pieced together from combinations of smaller components custom_mean = sn.laplace_mechanism(sn.mean(preprocessed_age), privacy_usage={'epsilon': .5}) custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age), privacy_usage={'epsilon': .5}) custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age), privacy_usage={'epsilon': .5}) custom_quantile = sn.laplace_mechanism(sn.quantile(preprocessed_age, alpha=.5), privacy_usage={'epsilon': 500}) income = sn.to_float(dataset_pums['income']) income_max = sn.laplace_mechanism(sn.maximum(income, data_lower=0., data_upper=1000000.), privacy_usage={'epsilon': 10}) # releases may also be postprocessed and reused as arguments to more components age_sum + custom_maximum * 23. analysis.release() print("laplace quantile:", custom_quantile.value) age_histogram = sn.dp_histogram(sn.to_int(age, lower=0, upper=100), edges=list(range(0, 100, 25)), null_value=150, privacy_usage={'epsilon': 2.}) sex_histogram = sn.dp_histogram(sn.to_bool(dataset_pums['sex'], true_label="1"), privacy_usage={'epsilon': 2.}) education_histogram = sn.dp_histogram(dataset_pums['educ'], categories=["5", "7", "10"], null_value="-1", privacy_usage={'epsilon': 2.}) analysis.release() print("age histogram: ", age_histogram.value) print("sex histogram: ", sex_histogram.value) print("education histogram: ", education_histogram.value) if run: analysis.release() # get the mean computed when release() was called print(mean.value) print(variance.value) return analysis
def test_everything(run=True): with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age_int = sn.to_int(data['age'], 0, 150) sex = sn.to_bool(data['sex'], "1") educ = sn.to_float(data['educ']) race = data['race'] income = sn.to_float(data['income']) married = sn.to_bool(data['married'], "1") numerics = sn.to_float(data[['age', 'income']]) # intentionally busted component # print("invalid component id ", (sex + "a").component_id) # broadcast scalar over 2d, broadcast scalar over 1d, columnar broadcasting, left and right mul numerics * 2. + 2. * educ # add different values for each column numerics + [[1., 2.]] # index into first column age = sn.index(numerics, indices=0) income = sn.index(numerics, mask=[False, True]) # boolean ops and broadcasting mask = sex & married | (~married ^ False) | (age > 50.) | (age_int == 25) # numerical clamping sn.clamp(numerics, 0., [150., 150_000.]) sn.clamp(data['educ'], categories=[str(i) for i in range(8, 10)], null_value="-1") sn.count(mask) sn.covariance(age, income) sn.digitize(educ, edges=[1., 3., 10.], null_value=-1) # checks for safety against division by zero income / 2. income / sn.clamp(educ, 5., 20.) sn.dp_count(data, privacy_usage={"epsilon": 0.5}) sn.dp_count(mask, privacy_usage={"epsilon": 0.5}) sn.dp_histogram(mask, privacy_usage={"epsilon": 0.5}) age = sn.impute(sn.clamp(age, 0., 150.)) sn.dp_maximum(age, privacy_usage={"epsilon": 0.5}) sn.dp_minimum(age, privacy_usage={"epsilon": 0.5}) sn.dp_median(age, privacy_usage={"epsilon": 0.5}) age_n = sn.resize(age, number_rows=800) sn.dp_mean(age_n, privacy_usage={"epsilon": 0.5}) sn.dp_raw_moment(age_n, order=3, privacy_usage={"epsilon": 0.5}) sn.dp_sum(age, privacy_usage={"epsilon": 0.5}) sn.dp_variance(age_n, privacy_usage={"epsilon": 0.5}) sn.filter(income, mask) race_histogram = sn.histogram(race, categories=["1", "2", "3"], null_value="3") sn.histogram(income, edges=[0., 10000., 50000.], null_value=-1) sn.dp_histogram(married, privacy_usage={"epsilon": 0.5}) sn.gaussian_mechanism(race_histogram, privacy_usage={ "epsilon": 0.5, "delta": .000001 }) sn.laplace_mechanism(race_histogram, privacy_usage={ "epsilon": 0.5, "delta": .000001 }) sn.raw_moment(educ, order=3) sn.log(sn.clamp(educ, 0.001, 50.)) sn.maximum(educ) sn.mean(educ) sn.minimum(educ) educ % 2. educ**2. sn.quantile(educ, .32) sn.resize(educ, number_rows=1200, lower=0., upper=50.) sn.resize(race, number_rows=1200, categories=["1", "2"], weights=[1, 2]) sn.resize(data[["age", "sex"]], 1200, categories=[["1", "2"], ["a", "b"]], weights=[1, 2]) sn.resize(data[["age", "sex"]], 1200, categories=[["1", "2"], ["a", "b", "c"]], weights=[[1, 2], [3, 7, 2]]) sn.sum(educ) sn.variance(educ) if run: analysis.release() return analysis