コード例 #1
0
def test_dataframe_partitioning_2():
    # dataframe partition with multi-index grouping
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        grouper = sn.clamp(data[['sex', 'educ']],
                           categories=[['0', '1'],
                                       [str(i) for i in range(14)]],
                           null_value='-1')
        partitioned = sn.partition(data, by=grouper)

        sn.union(
            {
                key: sn.dp_count(partitioned[key],
                                 privacy_usage={"epsilon": 0.5})
                for key in partitioned.partition_keys
            },
            flatten=False)

        print(
            sn.union({
                key: sn.dp_mean(
                    sn.to_float(partitioned[key]['income']),
                    implementation="plug-in",
                    # data_rows=100,
                    data_lower=0.,
                    data_upper=200_000.,
                    privacy_usage={"epsilon": 0.5})
                for key in partitioned.partition_keys
            }))
コード例 #2
0
def test_map_1():
    # map a count over all dataframe partitions
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        partitioned = sn.partition(data,
                                   by=sn.to_bool(data['sex'], true_label="1"))

        counts = sn.dp_count(partitioned, privacy_usage={"epsilon": 0.5})

        print(counts.value)
        print(analysis.privacy_usage)
コード例 #3
0
def test_dp_count(run=True):
    with sn.Analysis() as analysis:
        dataset_pums = sn.Dataset(path=TEST_PUMS_PATH,
                                  column_names=TEST_PUMS_NAMES)

        count = sn.dp_count(dataset_pums['sex'] == '1',
                            privacy_usage={'epsilon': 0.5})

    if run:
        analysis.release()
        print(count.value)

    return analysis
コード例 #4
0
def test_map_2():
    # map a count over a large number of tuple partitions of dataframes
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        grouper = sn.clamp(data[['sex', 'educ']],
                           categories=[['0', '1'],
                                       [str(i) for i in range(14)]],
                           null_value='-1')
        partitioned = sn.partition(data, by=grouper)

        counts = sn.dp_count(partitioned, privacy_usage={"epsilon": 0.5})

        print(counts.value)
        print(analysis.privacy_usage)
コード例 #5
0
def test_groupby_1():

    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        partitioned = sn.partition(data[['educ', 'income']], by=is_male)

        counts = {
            cat: sn.dp_count(partitioned[cat], privacy_usage={'epsilon': 0.1})
            for cat in is_male.categories
        }

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print({cat: counts[cat].value for cat in counts})
コード例 #6
0
def test_map_4():
    # chain multiple mapped releases over a partition with implicit preprocessing
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        partitioned = sn.partition(sn.to_float(data['age']),
                                   by=sn.to_bool(data['sex'], true_label="1"))

        counts = sn.row_max(
            1, sn.dp_count(partitioned, privacy_usage={'epsilon': 0.5}))

        means = sn.dp_mean(partitioned,
                           privacy_usage={'epsilon': 0.7},
                           data_rows=counts,
                           data_lower=0.,
                           data_upper=15.)

        print("counts:", counts.value)
        print("means:", means.value)

        print(analysis.privacy_usage)
コード例 #7
0
        def analyze(data):
            educ = sn.clamp(sn.to_int(sn.index(data, indices=0),
                                      lower=0,
                                      upper=15),
                            categories=list(range(15)),
                            null_value=-1)
            income = sn.index(data, indices=1)
            repartitioned = sn.partition(income, by=educ)

            inner_count = {}
            inner_means = {}
            for key in [5, 8, 12]:
                educ_level_part = repartitioned[key]

                inner_count[key] = sn.dp_count(educ_level_part,
                                               privacy_usage={"epsilon": 0.4})
                inner_means[key] = sn.mean(
                    sn.resize(educ_level_part,
                              number_rows=sn.row_min(1, inner_count[key] * 4 //
                                                     5)))

            return sn.union(inner_means), sn.union(inner_count)
コード例 #8
0
def test_groupby_2():
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        is_male = sn.to_bool(data['sex'], true_label="1")
        partitioned = sn.partition(sn.to_float(data[['educ', 'income']]),
                                   by=is_male)

        counts = {
            True:
            sn.dp_count(partitioned[True], privacy_usage={'epsilon': 0.1}),
            False:
            sn.dp_mean(partitioned[False],
                       privacy_usage={'epsilon': 0.1},
                       data_rows=500,
                       data_lower=[0., 0.],
                       data_upper=[15., 200_000.])
        }

    # analysis.plot()
    analysis.release()
    print(analysis.privacy_usage)
    print({cat: counts[cat].value for cat in counts})
コード例 #9
0
def create_dicts(data, non_income_data, plausible_variable_combinations):
    count_dict = dict()
    priv_count_dict = dict()

    mean_income_dict = dict()
    priv_mean_income_dict = dict()

    median_income_dict = dict()
    priv_median_income_dict = dict()

    min_income_dict = dict()
    priv_min_income_dict = dict()

    max_income_dict = dict()
    priv_max_income_dict = dict()

    # get number of data elements with each set of variable values
    for i, combination in enumerate(plausible_variable_combinations):
        # print('run {0} of {1}'.format(i+1, len(plausible_variable_combinations)))

        if len(combination) == 1:
            dt = data[non_income_data[combination[0]] == 1]

        elif len(combination) == 2:
            dt = data[(non_income_data[combination[0]] == 1)
                      & (non_income_data[combination[1]] == 1)]

        elif len(combination) == 3:
            dt = data[(non_income_data[combination[0]] == 1)
                      & (non_income_data[combination[1]] == 1) &
                      (non_income_data[combination[2]] == 1)]

        elif len(combination) == 4:
            dt = data[(non_income_data[combination[0]] == 1)
                      & (non_income_data[combination[1]] == 1) &
                      (non_income_data[combination[2]] == 1) &
                      (non_income_data[combination[3]] == 1)]

        elif len(combination) == 5:
            dt = data[(non_income_data[combination[0]] == 1)
                      & (non_income_data[combination[1]] == 1) &
                      (non_income_data[combination[2]] == 1) &
                      (non_income_data[combination[3]] == 1) &
                      (non_income_data[combination[4]] == 1)]

        count_dict['__'.join(combination)] = dt.shape[0]
        mean_income_dict['__'.join(combination)] = np.mean(dt['income'])
        median_income_dict['__'.join(combination)] = np.median(dt['income'])
        min_income_dict['__'.join(combination)] = np.min(dt['income'])
        max_income_dict['__'.join(combination)] = np.max(dt['income'])

        with sn.Analysis() as analysis:
            # load data
            priv_data = sn.Dataset(value=dt['income'])
            # estimate sample size
            count = sn.dp_count(priv_data, privacy_usage={'epsilon': .05})
            # preprocess data
            priv_data = sn.resize(sn.to_float(priv_data),
                                  number_columns=1,
                                  number_rows=sn.row_max(1, count),
                                  lower=0.,
                                  upper=100_000.)
            priv_data = sn.impute(sn.clamp(priv_data, lower=0.,
                                           upper=100_000.))
            # get mean
            mean = sn.dp_mean(priv_data, privacy_usage={'epsilon': 0.1})
            # get median
            median = sn.dp_median(priv_data, privacy_usage={'epsilon': 0.1})
            # get min
            _min = sn.dp_minimum(priv_data, privacy_usage={'epsilon': 0.1})
            # get max
            _max = sn.dp_maximum(priv_data, privacy_usage={'epsilon': 0.1})
            analysis.release()

            priv_count_dict['__'.join(combination)] = max(0, count.value)
            priv_mean_income_dict['__'.join(combination)] = min(
                max(0, mean.value), 100_000)
            priv_median_income_dict['__'.join(combination)] = min(
                max(0, median.value), 100_000)
            priv_min_income_dict['__'.join(combination)] = min(
                max(0, _min.value), 100_000)
            priv_max_income_dict['__'.join(combination)] = min(
                max(0, _max.value), 100_000)

    return (count_dict, priv_count_dict, mean_income_dict,
            priv_mean_income_dict, median_income_dict, priv_median_income_dict,
            min_income_dict, priv_min_income_dict, max_income_dict,
            priv_max_income_dict)
コード例 #10
0
def test_dp_linear_stats(run=True):
    with sn.Analysis() as analysis:
        dataset_pums = sn.Dataset(path=TEST_PUMS_PATH,
                                  column_names=TEST_PUMS_NAMES)

        age = dataset_pums['age']
        analysis.release()

        num_records = sn.dp_count(age,
                                  privacy_usage={'epsilon': .5},
                                  lower=0,
                                  upper=10000)
        analysis.release()

        print("number of records:", num_records.value)

        vars = sn.to_float(dataset_pums[["age", "income"]])

        covariance = sn.dp_covariance(data=vars,
                                      privacy_usage={'epsilon': .5},
                                      data_lower=[0., 0.],
                                      data_upper=[150., 150000.],
                                      data_rows=num_records)
        print("covariance released")

        num_means = sn.dp_mean(data=vars,
                               privacy_usage={'epsilon': .5},
                               data_lower=[0., 0.],
                               data_upper=[150., 150000.],
                               data_rows=num_records)

        analysis.release()
        print("covariance:\n", covariance.value)
        print("means:\n", num_means.value)

        age = sn.to_float(age)

        age_variance = sn.dp_variance(age,
                                      privacy_usage={'epsilon': .5},
                                      data_lower=0.,
                                      data_upper=150.,
                                      data_rows=num_records)

        analysis.release()

        print("age variance:", age_variance.value)

        # If I clamp, impute, resize, then I can reuse their properties for multiple statistics
        clamped_age = sn.clamp(age, lower=0., upper=100.)
        imputed_age = sn.impute(clamped_age)
        preprocessed_age = sn.resize(imputed_age, number_rows=num_records)

        # properties necessary for mean are statically known
        mean = sn.dp_mean(preprocessed_age, privacy_usage={'epsilon': .5})

        # properties necessary for variance are statically known
        variance = sn.dp_variance(preprocessed_age,
                                  privacy_usage={'epsilon': .5})

        # sum doesn't need n, so I pass the data in before resizing
        age_sum = sn.dp_sum(imputed_age, privacy_usage={'epsilon': .5})

        # mean with lower, upper properties propagated up from prior bounds
        transformed_mean = sn.dp_mean(-(preprocessed_age + 2.),
                                      privacy_usage={'epsilon': .5})

        analysis.release()
        print("age transformed mean:", transformed_mean.value)

        # releases may be pieced together from combinations of smaller components
        custom_mean = sn.laplace_mechanism(sn.mean(preprocessed_age),
                                           privacy_usage={'epsilon': .5})

        custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age),
                                              privacy_usage={'epsilon': .5})

        custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age),
                                              privacy_usage={'epsilon': .5})

        custom_quantile = sn.laplace_mechanism(sn.quantile(preprocessed_age,
                                                           alpha=.5),
                                               privacy_usage={'epsilon': 500})

        income = sn.to_float(dataset_pums['income'])
        income_max = sn.laplace_mechanism(sn.maximum(income,
                                                     data_lower=0.,
                                                     data_upper=1000000.),
                                          privacy_usage={'epsilon': 10})

        # releases may also be postprocessed and reused as arguments to more components
        age_sum + custom_maximum * 23.

        analysis.release()
        print("laplace quantile:", custom_quantile.value)

        age_histogram = sn.dp_histogram(sn.to_int(age, lower=0, upper=100),
                                        edges=list(range(0, 100, 25)),
                                        null_value=150,
                                        privacy_usage={'epsilon': 2.})

        sex_histogram = sn.dp_histogram(sn.to_bool(dataset_pums['sex'],
                                                   true_label="1"),
                                        privacy_usage={'epsilon': 2.})

        education_histogram = sn.dp_histogram(dataset_pums['educ'],
                                              categories=["5", "7", "10"],
                                              null_value="-1",
                                              privacy_usage={'epsilon': 2.})

        analysis.release()

        print("age histogram: ", age_histogram.value)
        print("sex histogram: ", sex_histogram.value)
        print("education histogram: ", education_histogram.value)

    if run:
        analysis.release()

        # get the mean computed when release() was called
        print(mean.value)
        print(variance.value)

    return analysis
コード例 #11
0
def test_everything(run=True):
    with sn.Analysis() as analysis:
        data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES)

        age_int = sn.to_int(data['age'], 0, 150)
        sex = sn.to_bool(data['sex'], "1")
        educ = sn.to_float(data['educ'])
        race = data['race']
        income = sn.to_float(data['income'])
        married = sn.to_bool(data['married'], "1")

        numerics = sn.to_float(data[['age', 'income']])

        # intentionally busted component
        # print("invalid component id ", (sex + "a").component_id)

        # broadcast scalar over 2d, broadcast scalar over 1d, columnar broadcasting, left and right mul
        numerics * 2. + 2. * educ

        # add different values for each column
        numerics + [[1., 2.]]

        # index into first column
        age = sn.index(numerics, indices=0)
        income = sn.index(numerics, mask=[False, True])

        # boolean ops and broadcasting
        mask = sex & married | (~married ^ False) | (age > 50.) | (age_int
                                                                   == 25)

        # numerical clamping
        sn.clamp(numerics, 0., [150., 150_000.])
        sn.clamp(data['educ'],
                 categories=[str(i) for i in range(8, 10)],
                 null_value="-1")

        sn.count(mask)
        sn.covariance(age, income)
        sn.digitize(educ, edges=[1., 3., 10.], null_value=-1)

        # checks for safety against division by zero
        income / 2.
        income / sn.clamp(educ, 5., 20.)

        sn.dp_count(data, privacy_usage={"epsilon": 0.5})
        sn.dp_count(mask, privacy_usage={"epsilon": 0.5})

        sn.dp_histogram(mask, privacy_usage={"epsilon": 0.5})
        age = sn.impute(sn.clamp(age, 0., 150.))
        sn.dp_maximum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_minimum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_median(age, privacy_usage={"epsilon": 0.5})

        age_n = sn.resize(age, number_rows=800)
        sn.dp_mean(age_n, privacy_usage={"epsilon": 0.5})
        sn.dp_raw_moment(age_n, order=3, privacy_usage={"epsilon": 0.5})

        sn.dp_sum(age, privacy_usage={"epsilon": 0.5})
        sn.dp_variance(age_n, privacy_usage={"epsilon": 0.5})

        sn.filter(income, mask)
        race_histogram = sn.histogram(race,
                                      categories=["1", "2", "3"],
                                      null_value="3")
        sn.histogram(income, edges=[0., 10000., 50000.], null_value=-1)

        sn.dp_histogram(married, privacy_usage={"epsilon": 0.5})

        sn.gaussian_mechanism(race_histogram,
                              privacy_usage={
                                  "epsilon": 0.5,
                                  "delta": .000001
                              })
        sn.laplace_mechanism(race_histogram,
                             privacy_usage={
                                 "epsilon": 0.5,
                                 "delta": .000001
                             })

        sn.raw_moment(educ, order=3)

        sn.log(sn.clamp(educ, 0.001, 50.))
        sn.maximum(educ)
        sn.mean(educ)
        sn.minimum(educ)

        educ % 2.
        educ**2.

        sn.quantile(educ, .32)

        sn.resize(educ, number_rows=1200, lower=0., upper=50.)
        sn.resize(race,
                  number_rows=1200,
                  categories=["1", "2"],
                  weights=[1, 2])
        sn.resize(data[["age", "sex"]],
                  1200,
                  categories=[["1", "2"], ["a", "b"]],
                  weights=[1, 2])
        sn.resize(data[["age", "sex"]],
                  1200,
                  categories=[["1", "2"], ["a", "b", "c"]],
                  weights=[[1, 2], [3, 7, 2]])

        sn.sum(educ)
        sn.variance(educ)

    if run:
        analysis.release()

    return analysis