def getResiduals(self): theGraph = ot.Graph('Residuals','varying dimension','residual',True,'') theCurve = ot.Curve(list(range(len(self.__residuals__))), self.__residuals__, 'residuals') theGraph.add(theCurve) ot.Show(theGraph)
gridLayout.setGraph(0, 0, graph1) gridLayout.setGraph(0, 1, graph2) view = viewer.View(gridLayout, legend_kw={ "title": "infection rate", "loc": "upper left" }) view.ShowAll() # %% # We validate the pertinence of Karhunen-Loeve decomposition: validationKL = ot.KarhunenLoeveValidation(outputFMUTestSample, resultKL) graph = validationKL.computeResidualMean().draw() ot.Show(graph) # %% # As the epidemiological model considers a population size of 700, the residual # mean error on the field is acceptable. # %% # We validate the Kriging (using the Karhunen-Loeve coefficients of the test # sample): projectFunction = ot.KarhunenLoeveProjection(resultKL) coefficientSample = projectFunction(outputFMUTestSample) validationKriging = ot.MetaModelValidation(inputTestSample, coefficientSample, metamodel) Q2 = validationKriging.computePredictivityFactor()[0]
def getGraphs(self): for graph in self.__graphs__ : ot.Show(graph)