예제 #1
0
 def getResiduals(self):
     theGraph = ot.Graph('Residuals','varying dimension','residual',True,'')
     theCurve = ot.Curve(list(range(len(self.__residuals__))),
                         self.__residuals__, 'residuals')
     theGraph.add(theCurve)
     ot.Show(theGraph)
예제 #2
0
gridLayout.setGraph(0, 0, graph1)
gridLayout.setGraph(0, 1, graph2)
view = viewer.View(gridLayout,
                   legend_kw={
                       "title": "infection rate",
                       "loc": "upper left"
                   })
view.ShowAll()

# %%
# We validate the pertinence of Karhunen-Loeve decomposition:

validationKL = ot.KarhunenLoeveValidation(outputFMUTestSample, resultKL)
graph = validationKL.computeResidualMean().draw()
ot.Show(graph)

# %%
# As the epidemiological model considers a population size of 700, the residual
# mean error on the field is acceptable.

# %%
# We validate the Kriging (using the Karhunen-Loeve coefficients of the test
# sample):

projectFunction = ot.KarhunenLoeveProjection(resultKL)
coefficientSample = projectFunction(outputFMUTestSample)

validationKriging = ot.MetaModelValidation(inputTestSample, coefficientSample,
                                           metamodel)
Q2 = validationKriging.computePredictivityFactor()[0]
예제 #3
0
 def getGraphs(self):
     for graph in self.__graphs__ :
         ot.Show(graph)