def evaluate():
	wins = [0, 0]
	for i in range(100):
		player1 = randomPlayer()
		player2 = nTuplesSystematic()
		winner = game2.play(othello.game(), game2.player_epsilon(lambda x: player1.play_next_move(x)),game2.player_epsilon(lambda x: player2.play_next_move(x)), False)
		if winner == 1:
			wins[0] += 1
		elif winner == 2:
			wins[1] += 1
		winner = game2.play(othello.game(),game2.player_epsilon(lambda x: player2.play_next_move(x)), game2.player_epsilon(lambda x: player1.play_next_move(x)), False)
		if winner == 2:
			wins[0] += 1
		elif winner == 1:
			wins[1] += 1

	print wins
Exemple #2
0
def _current_game(helper, ai) -> None:
    """Runs the main game"""
    if ai == True:
        othello.STARTING_PLAYER = othello.BLACK
    current_game = othello.game()
    current_game.new_game()
    if helper == True:
        _print_board(
            othello.valid_moves_board(current_game.board(),
                                      current_game.turn()))
    else:
        _print_board(current_game.board())
    _print_score(current_game)
    _print_turn(current_game.turn())
    while othello.winning_player(current_game, othello.MODE) == othello.NONE:
        if len(othello.valid_moves(current_game.board(),
                                   current_game.turn())) == 0:
            if othello.full_board(current_game.board()) != 0:
                print("{} player has no valid moves and passes.".format(
                    current_game.turn()))
                current_game.no_moves()
                continue
        else:
            if ai == True:
                if current_game.turn() == othello.WHITE:
                    current_game.skip_reset()
                    column, row = othello.ai(current_game.board(),
                                             othello.WHITE)
                    flip = othello._is_valid_move(current_game.board(),
                                                  current_game.turn(), column,
                                                  row)
                    input("Enter anything to see AI's move")
                else:
                    flip = game_menu(current_game.board(), current_game.turn())
                for column, row in flip:
                    current_game.drop_piece(column, row)
            elif ai == False:
                current_game.skip_reset()
                flip = game_menu(current_game.board(), current_game.turn())
                for column, row in flip:
                    current_game.drop_piece(column, row)
            current_game.change_turn()
        if helper == True:
            _print_board(
                othello.valid_moves_board(current_game.board(),
                                          current_game.turn()))
        else:
            _print_board(current_game.board())
        _print_score(current_game)
        if othello.winning_player(current_game, othello.MODE) == othello.NONE:
            _print_turn(current_game.turn())
    if othello.winning_player(current_game, othello.MODE) == othello.WHITE:
        print('White player has won.')
    elif othello.winning_player(current_game, othello.MODE) == othello.BLACK:
        print('Black player has won.')
    elif othello.winning_player(current_game, othello.MODE) == othello.TIE:
        print('Tie')
Exemple #3
0
def main(method="alphabeta"):
    game = othello.game()
    print("Your stone is Black(B)")
    while game.goeson():
        if game.turn() == 1:
            # user
            game.show()
            while True:
                try:
                    if len(game.findavailable()) == 0:
                        print("You cannot put the stone...pass")
                        game.upass()
                        break
                    print("Enter the position you want to put the stone.")
                    row = int(input("row >"))
                    col = int(input("col >"))
                    game.put(row, col)
                    game.show()
                    break
                except ValueError:
                    print("Enter 1~8")
                except othello.CanNotPutStoneError:
                    print("You cannot put the stone there.")
        else:
            # computer
            if len(game.findavailable()) == 0:
                game.upass()
            else:
                if method == "alphabeta":
                    pos, score = game.alphabeta()
                else:
                    pos, score = game.minmax()
                print("score:", score)
                game.put(pos[0], pos[1])

    game.show()
    winner = game.winner()
    if winner == 1:
        print("You Win!")
        print("Black: ", game.numblack())
        print("White: ", game.numwhite())
    elif winner == -1:
        print("You Lose...")
        print("Black: ", game.numblack())
        print("White: ", game.numwhite())
    else:
        print("Draw")
    print("log: (stone, row, col)")
    print(game.getlog())
Exemple #4
0
    def play(self, game, opp_move):
        return self.play_fn(game)

    def gameover(self, game, last_move):
        pass


if __name__ == "__main__":
    import othello
    import minimax

    # Experiment 1:
    # Player 1 and Player 2 are evenly matched with 3-ply deep search
    # player 2 wins with a final score of 28
    # player 1 0.2 s per ply player 2 0.4 s per ply
    play(othello.game(), player(lambda x: minimax.minimax(x, 3)),
         player(lambda x: minimax.minimax(x, 3)), False)

    # Experiment 2:
    # now we show the significance of an evaluation function
    # we weaken player1 to 2 ply deep but use the edge eval fun
    # player 1 now beats player 2 with a score of 58!
    # player 1 0.1 s per ply player 2 0.4 s per ply
    play(othello.game(),
         player(lambda x: minimax.minimax(x, 2, othello.edge_eval)),
         player(lambda x: minimax.minimax(x, 3)), False)

    # Experiment 1 (with alpha-beta):
    # player 1 0.1 s per ply, player 2 0.1 s per ply
    play(othello.game(), player(lambda x: minimax.alphabeta(x, 3)),
         player(lambda x: minimax.alphabeta(x, 3)), False)
Exemple #5
0
        score = game.score() * game.player
        if score > 0:
            win_text = "White Won"
        elif score < 0:
            win_text = "Black Won"
        else:
            win_text = "Draw"

        self.draw_board(game, last_move)
        self.root.configure(cursor="X_cursor")
        self.movemesg.set("Game Over " + win_text)

        # wait for the user to quit the game
        while self.alive:
            self.root.update()
            time.sleep(.1)

        return


if __name__ == "__main__":

    print("""othello_gui, Copyright (C) 2006 Nimar S. Arora
othello_gui comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions.""")

    game2.play(othello.game(), game2.player(lambda x: greedy.get_move(x)),
               player(), True)
import ntuplesystematic as nts
import time
import random
import numpy
import nn

populationsize=10
goodpopulationsize=5
generations=5
parent = []
child = [0]*populationsize

for i in range(populationsize):
		playermaxx = nn.nn()
		for j in range(200):
			game2.play(othello.game(), game2.player(lambda x: playermaxx.play_move(x,0.3)),game2.player(lambda x: playermaxx.play_move(x,0.3)), False)
			playermaxx.reset()
		parent.append(playermaxx)


for z in range(generations):
	win = []
	for i in range(populationsize):
		winsfori=0
		for j in range(100):
			winner = game2.play(othello.game(), game2.player_epsilon(lambda x: parent[i].play_move(x)),game2.player_epsilon(lambda x: nTuplesSystematicObject.play_next_move(x)), False)
			if winner == 1:
				winsfori += 1
			winner = game2.play(othello.game(),game2.player_epsilon(lambda x: nTuplesSystematicObject.play_next_move(x)), game2.player_epsilon(lambda x: parent[i].play_move(x)), False)
			if winner == 2:
				winsfori += 1
Exemple #7
0
        score = game.score() * game.player
        if score > 0:
            win_text = "White Won"
        elif score < 0:
            win_text = "Black Won"
        else:
            win_text = "Draw"

        self.draw_board(game, last_move)        
        self.root.configure(cursor="X_cursor")
        self.movemesg.set("Game Over "+win_text)

        # wait for the user to quit the game        
        while self.alive:
            self.root.update()
            time.sleep(.1)

        return

    
if __name__ == "__main__":

    print("""othello_gui, Copyright (C) 2006 Nimar S. Arora
othello_gui comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions.""")
    
    game2.play(othello.game(),
               game2.player(lambda x: minimax.alphabeta(x, 4, othello.edge_eval)),
               player(), True)
    def gameover(self, game, last_move):
        pass


    
if __name__ == "__main__":
    import othello
    import minimax


    # Experiment 1:
    # Player 1 and Player 2 are evenly matched with 3-ply deep search
    # player 2 wins with a final score of 28
    # player 1 0.2 s per ply player 2 0.4 s per ply
    play(othello.game(), player_epsilon(lambda x: minimax.minimax(x, 3)),
         player_epsilon(lambda x: minimax.minimax(x, 3)), False)
    
    # Experiment 2:
    # now we show the significance of an evaluation function
    # we weaken player1 to 2 ply deep but use the edge eval fun
    # player 1 now beats player 2 with a score of 58!
    # player 1 0.1 s per ply player 2 0.4 s per ply
    # play(othello.game(), player(lambda x: minimax.minimax(x, 2, othello.edge_eval)),player(lambda x: minimax.minimax(x, 3)), False)

    # Experiment 1 (with alpha-beta):
    # player 1 0.1 s per ply, player 2 0.1 s per ply
    # play(othello.game(), player(lambda x: minimax.alphabeta(x, 3)),player(lambda x: minimax.alphabeta(x, 3)), False)

    # Experiment 2 (with alpha-beta):
    # player 1 0.0 s per ply player 2 0.1 s per ply
Exemple #9
0
def start_game(window):
    """Starts the othello game"""
    window.destroy()
    game = othello.game()
    state = game_board(game)
    state.start()
Exemple #10
0
    # run this algorithm with different hard-coded sizes
    # for each policy
    # for each budget (i.e. 1,2,5 seconds)
    # for each opponent
    # run n trials with us first, n trials with them first

    for pol_key in policies:
        for b in budgets:
            for c in c_vals:
                for opp_key in opponents:
                    t = UCT_tree.Tree(b, policies[pol_key], c)
                    uct_player = game2.player(t.policy)
                    uct_black = []
                    uct_white = []
                    for i in range(n):
                        b_result, b_game = game2.play(othello.game(),
                                                      uct_player,
                                                      opponents[opp_key],
                                                      False)
                        uct_black.append(b_result)
                        #print b_game
                        w_result, w_game = game2.play(othello.game(),
                                                      opponents[opp_key],
                                                      uct_player, False)
                        uct_white.append(w_result)
                        #print w_game
                    print("Average score over " + str(n) +
                          "trials for default policy " + str(pol_key) +
                          ", budget " + str(b) + ", c = " + str(c) +
                          ", opponent " + str(opp_key) + ":")
                    print("Results as black (positive = we win):")
	"""
	if game_elem==-1:
		return 2
	elif game_elem==1:
		return 0
	else:
		return 1


if __name__ == "__main__":
	"""
	Creates a main player
	"""
	nTuplesSystematicObject = nTuplesSystematic()

	# nTuplesSystematic - Black
	# Minimax - White
	# game2.play(othello.game(),game2.player(lambda x: nTuplesSystematicObject.play_next_move(x)), game2.player(lambda x: minimax.minimax(x, 0)), False)

	# Minimax - Black
	# nTuplesSystematic - White
	# game2.play(othello.game(), game2.player(lambda x: minimax.minimax(x, 0)),game2.player(lambda x: nTuplesSystematicObject.play_next_move(x)),False)

	# nTuplesSystematic - Black
	# Minimax Edge Eval - White
	# game2.play(othello.game(),game2.player(lambda x: nTuplesSystematicObject.play_next_move(x)), game2.player(lambda x: minimax.minimax(x, 0,othello.edge_eval)), True)
	
	# Minimax Edge Eval - Black
	# nTuplesSystematic - White
	game2.play(othello.game(), game2.player(lambda x: minimax.minimax(x, 0,othello.edge_eval)),game2.player(lambda x: nTuplesSystematicObject.play_next_move(x)), True)
Exemple #12
0
        if score > 0:
            win_text = "White Won"
        elif score < 0:
            win_text = "Black Won"
        else:
            win_text = "Draw"

        self.draw_board(game, last_move)
        self.root.configure(cursor="X_cursor")
        self.movemesg.set("Game Over " + win_text)

        # wait for the user to quit the game
        while self.alive:
            self.root.update()
            time.sleep(.1)

        return


if __name__ == "__main__":

    print("""othello_gui, Copyright (C) 2006 Nimar S. Arora
othello_gui comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions.""")

    game2.play(
        othello.game(),
        game2.player(lambda x: minimax.alphabeta(x, 4, othello.edge_eval)),
        player(), True)
Exemple #13
0
    # number of games going first/second with each configuration
    n = 10

    # run this algorithm with different hard-coded sizes
    # for each policy
        # for each budget (i.e. 1,2,5 seconds)
            # for each opponent
                # run n trials with us first, n trials with them first
    
    for pol_key in policies:
        for b in budgets:
            for c in c_vals:
                for opp_key in opponents:
                    t = UCT_tree.Tree(b, policies[pol_key], c)
                    uct_player = game2.player(t.policy)
                    uct_black = []
                    uct_white = []
                    for i in range(n):
                        b_result, b_game = game2.play(othello.game(), uct_player, opponents[opp_key], False)
                        uct_black.append(b_result)
                        #print b_game
                        w_result, w_game = game2.play(othello.game(), opponents[opp_key], uct_player, False)
                        uct_white.append(w_result)
                        #print w_game
                    print("Average score over " + str(n) + "trials for default policy " + str(pol_key) + ", budget " + str(b) + ", c = " + str(c) + ", opponent " + str(opp_key) + ":")
                    print("Results as black (positive = we win):")
                    print(str(average(uct_black)))
                    print("Results as white (negative = we win):")
                    print(str(average(uct_white)))

Exemple #14
0
    def play(self, game, opp_move):
        return self.play_fn(game)

    def gameover(self, game, last_move):
        pass
    
if __name__ == "__main__":
    import othello
    import minimax


    # Experiment 1:
    # Player 1 and Player 2 are evenly matched with 3-ply deep search
    # player 2 wins with a final score of 28
    # player 1 0.2 s per ply player 2 0.4 s per ply
    play(othello.game(), player(lambda x: minimax.minimax(x, 3)),
         player(lambda x: minimax.minimax(x, 3)), False)
    
    # Experiment 2:
    # now we show the significance of an evaluation function
    # we weaken player1 to 2 ply deep but use the edge eval fun
    # player 1 now beats player 2 with a score of 58!
    # player 1 0.1 s per ply player 2 0.4 s per ply
    play(othello.game(), player(lambda x: minimax.minimax(x, 2, othello.edge_eval)),
         player(lambda x: minimax.minimax(x, 3)), False)

    # Experiment 1 (with alpha-beta):
    # player 1 0.1 s per ply, player 2 0.1 s per ply
    play(othello.game(), player(lambda x: minimax.alphabeta(x, 3)),
         player(lambda x: minimax.alphabeta(x, 3)), False)
Exemple #15
0
import othello as o
import position as p
import board as b
import othello_node as n

PLY = 1

game = o.game()


def batch():
    tree = create_tree()
    return tree


def apply_action(values, root):
    idx = values.index(min(values))
    move = root.children[idx].move
    game.play_move(move, root.turn)


def create_tree():
    root = n.Node(game.board, game.turn)
    create_sub_tree(root)
    return root


def create_sub_tree(root):
    if root.depth >= PLY:
        return
    moves = root.board.get_valid_moves(game.turn)
Exemple #16
0
        score = game.score() * game.player
        if score > 0:
            win_text = "White Won"
        elif score < 0:
            win_text = "Black Won"
        else:
            win_text = "Draw"

        self.draw_board(game, last_move)        
        self.root.configure(cursor="X_cursor")
        self.movemesg.set("Game Over "+win_text)

        # wait for the user to quit the game        
        while self.alive:
            self.root.update()
            time.sleep(.1)

        return

    
if __name__ == "__main__":

    print """othello_gui, Copyright (C) 2006 Nimar S. Arora
othello_gui comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions."""

    game2.play(othello.game(), player(), game2.player(lambda x: minimax.alphabeta(x, 3, othello.positional_eval)), True)

Exemple #17
0
    def play(self, game, opp_move):
        return self.play_fn(game)

    def gameover(self, game, last_move):
        pass

   
if __name__ == "__main__":
    import othello
    import minimax

    # Experiment 1:
    # Player 1 and Player 2 are evenly matched with 3-ply deep search
    # player 2 wins with a final score of 28
    # player 1 0.2 s per ply player 2 0.4 s per ply
    play(othello.game(), player(lambda x: minimax.minimax(x, 3)),
         player(lambda x: minimax.minimax(x, 3)), True)
    
    # Experiment 2:
    # now we show the significance of an evaluation function
    # we weaken player1 to 2 ply deep but use the edge eval fun
    # player 1 now beats player 2 with a score of 58!
    # player 1 0.1 s per ply player 2 0.4 s per ply
    play(othello.game(), player(lambda x: minimax.minimax(x, 2, othello.edge_eval)),
         player(lambda x: minimax.minimax(x, 3)), False)

    # Experiment 1 (with alpha-beta):
    # player 1 0.1 s per ply, player 2 0.1 s per ply
    play(othello.game(), player(lambda x: minimax.alphabeta(x, 3)),
         player(lambda x: minimax.alphabeta(x, 3)), False)
Exemple #18
0
        score = game.score() * game.player
        if score > 0:
            win_text = "White Won"
        elif score < 0:
            win_text = "Black Won"
        else:
            win_text = "Draw"

        self.draw_board(game, last_move)        
        self.root.configure(cursor="X_cursor")
        self.movemesg.set("Game Over "+win_text)

        # wait for the user to quit the game        
        while self.alive:
            self.root.update()
            time.sleep(.1)

        return

    
if __name__ == "__main__":

    print """othello_gui, Copyright (C) 2006 Nimar S. Arora
othello_gui comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions."""
    
    game2.play(othello.game(),
               game2.player(lambda x: minimax.alphabeta(x, 4, othello.edge_eval)),
               player(), True)