def test_scenario_1_s(self):
        # Smaller version of the corridor collisions scenario above
        # to facilitate DRL training
        scenario_1_mdp = OvercookedGridworld.from_layout_name(
            'scenario1_s', start_order_list=['any'], cook_time=5)
        mlp = MediumLevelPlanner.from_pickle_or_compute(
            scenario_1_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute)
        a0 = GreedyHumanModel(mlp)
        a1 = CoupledPlanningAgent(mlp)
        agent_pair = AgentPair(a0, a1)
        start_state = OvercookedState(
            [P((2, 1), s, Obj('onion', (2, 1))),
             P((4, 2), s)], {},
            order_list=['onion'])
        env = OvercookedEnv(scenario_1_mdp, start_state_fn=lambda: start_state)
        trajectory, time_taken_hr, _, _ = env.run_agents(
            agent_pair, include_final_state=True, display=DISPLAY)
        env.reset()

        print("\n" * 5)
        print("-" * 50)

        a0 = CoupledPlanningAgent(mlp)
        a1 = CoupledPlanningAgent(mlp)
        agent_pair = AgentPair(a0, a1)
        trajectory, time_taken_rr, _, _ = env.run_agents(
            agent_pair, include_final_state=True, display=DISPLAY)

        print("H+R time taken: ", time_taken_hr)
        print("R+R time taken: ", time_taken_rr)
        self.assertGreater(time_taken_hr, time_taken_rr)
Exemple #2
0
 def test_one_player_env(self):
     mdp = OvercookedGridworld.from_layout_name("cramped_room_single")
     env = OvercookedEnv(mdp, horizon=12)
     a0 = FixedPlanAgent([stay, w, w, e, e, n, e, interact, w, n, interact])
     ag = AgentGroup(a0)
     env.run_agents(ag, display=False)
     self.assertEqual(env.state.players_pos_and_or, (((2, 1), (0, -1)), ))
 def test_scenario_1(self):
     # Myopic corridor collision
     #
     # X X X X X O X D X X X X X
     # X   ↓Ho     X           X
     # X     X X X X X X X ↓R  X
     # X                       X
     # X S X X X X X X X X P P X
     #
     # H on left with onion, further away to the tunnel entrance than R.
     # Optimal planner tells R to go first and that H will wait
     # for R to pass. H however, starts going through the tunnel
     # and they get stuck. The H plan is a bit extreme (it would probably
     # realize that it should retrace it's steps at some point)
     scenario_1_mdp = OvercookedGridworld.from_layout_name(
         'small_corridor', start_order_list=['any'], cook_time=5)
     mlp = MediumLevelPlanner.from_pickle_or_compute(
         scenario_1_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute)
     a0 = GreedyHumanModel(mlp)
     a1 = CoupledPlanningAgent(mlp)
     agent_pair = AgentPair(a0, a1)
     start_state = OvercookedState(
         [P((2, 1), s, Obj('onion', (2, 1))),
          P((10, 2), s)], {},
         order_list=['onion'])
     env = OvercookedEnv(scenario_1_mdp, start_state_fn=lambda: start_state)
     env.run_agents(agent_pair, include_final_state=True, display=DISPLAY)
Exemple #4
0
 def test_four_player_env_fixed(self):
     mdp = OvercookedGridworld.from_layout_name("multiplayer_schelling")
     assert mdp.num_players == 4
     env = OvercookedEnv(mdp, horizon=16)
     a0 = FixedPlanAgent([stay, w, w])
     a1 = FixedPlanAgent([
         stay, stay, e, e, n, n, n, e, interact, n, n, w, w, w, n, interact,
         e
     ])
     a2 = FixedPlanAgent(
         [stay, w, interact, n, n, e, e, e, n, e, n, interact, w])
     a3 = FixedPlanAgent([e, interact, n, n, w, w, w, n, interact, e, s])
     ag = AgentGroup(a0, a1, a2, a3)
     env.run_agents(ag, display=False)
     self.assertEqual(env.state.players_pos_and_or,
                      (((1, 1), (-1, 0)), ((3, 1), (0, -1)),
                       ((2, 1), (-1, 0)), ((4, 2), (0, 1))))
 def test_one_coupled_one_fixed(self):
     a0 = CoupledPlanningAgent(self.mlp_large)
     a1 = FixedPlanAgent([s, e, n, w])
     agent_pair = AgentPair(a0, a1)
     env = OvercookedEnv(large_mdp, horizon=10)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     self.assertEqual(time_taken, 10)
 def test_fixed_plan_agents(self):
     a0 = FixedPlanAgent([s, e, n, w])
     a1 = FixedPlanAgent([s, w, n, e])
     agent_pair = AgentPair(a0, a1)
     env = OvercookedEnv(large_mdp, horizon=10)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     end_state = trajectory[-1][0]
     self.assertEqual(time_taken, 10)
     self.assertEqual(env.mdp.get_standard_start_state().player_positions,
                      end_state.player_positions)
 def test_two_coupled_agents(self):
     a0 = CoupledPlanningAgent(self.mlp_large)
     a1 = CoupledPlanningAgent(self.mlp_large)
     agent_pair = AgentPair(a0, a1)
     start_state = OvercookedState([P(
         (2, 2), n), P((2, 1), n)], {},
                                   order_list=['any'])
     env = OvercookedEnv(large_mdp, start_state_fn=lambda: start_state)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     end_state = trajectory[-1][0]
     self.assertEqual(end_state.order_list, [])
 def test_two_coupled_agents_coupled_pair(self):
     mlp_simple = MediumLevelPlanner.from_pickle_or_compute(
         simple_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute)
     cp_agent = CoupledPlanningAgent(mlp_simple)
     agent_pair = CoupledPlanningPair(cp_agent)
     start_state = OvercookedState([P(
         (2, 2), n), P((2, 1), n)], {},
                                   order_list=['any'])
     env = OvercookedEnv(simple_mdp, start_state_fn=lambda: start_state)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     end_state = trajectory[-1][0]
     self.assertEqual(end_state.order_list, [])
 def test_one_coupled_one_greedy_human(self):
     # Even though in the first ~10 timesteps it seems like agent 1 is wasting time
     # it turns out that this is actually not suboptimal as the true bottleneck is
     # going to be agent 0 later on (when it goes to get the 3rd onion)
     a0 = GreedyHumanModel(self.mlp_large)
     a1 = CoupledPlanningAgent(self.mlp_large)
     agent_pair = AgentPair(a0, a1)
     start_state = OvercookedState([P(
         (2, 1), s), P((1, 1), s)], {},
                                   order_list=['onion'])
     env = OvercookedEnv(large_mdp, start_state_fn=lambda: start_state)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     end_state = trajectory[-1][0]
     self.assertEqual(end_state.order_list, [])
 def test_two_greedy_human_open_map(self):
     scenario_2_mdp = OvercookedGridworld.from_layout_name(
         'scenario2', start_order_list=['any'], cook_time=5)
     mlp = MediumLevelPlanner.from_pickle_or_compute(
         scenario_2_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute)
     a0 = GreedyHumanModel(mlp)
     a1 = GreedyHumanModel(mlp)
     agent_pair = AgentPair(a0, a1)
     start_state = OvercookedState([P(
         (8, 1), s), P((1, 1), s)], {},
                                   order_list=['onion'])
     env = OvercookedEnv(scenario_2_mdp,
                         start_state_fn=lambda: start_state,
                         horizon=100)
     trajectory, time_taken, _, _ = env.run_agents(agent_pair,
                                                   include_final_state=True,
                                                   display=DISPLAY)
     end_state = trajectory[-1][0]
     self.assertEqual(len(end_state.order_list), 0)
Exemple #11
0
class TestOvercookedEnvironment(unittest.TestCase):
    def setUp(self):
        self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room")
        self.env = OvercookedEnv(self.base_mdp, **DEFAULT_ENV_PARAMS)
        self.rnd_agent_pair = AgentPair(FixedPlanAgent([stay, w, w]),
                                        FixedPlanAgent([stay, e, e]))
        np.random.seed(0)

    def test_constructor(self):
        try:
            OvercookedEnv(self.base_mdp, horizon=10)
        except Exception as e:
            self.fail("Failed to instantiate OvercookedEnv:\n{}".format(e))

        with self.assertRaises(TypeError):
            OvercookedEnv(self.base_mdp, **{"invalid_env_param": None})

    def test_step_fn(self):
        for _ in range(10):
            joint_action = random_joint_action()
            self.env.step(joint_action)

    def test_execute_plan(self):
        action_plan = [random_joint_action() for _ in range(10)]
        self.env.execute_plan(self.base_mdp.get_standard_start_state(),
                              action_plan)

    def test_run_agents(self):
        start_state = self.env.state
        self.env.run_agents(self.rnd_agent_pair)
        self.assertNotEqual(self.env.state, start_state)

    def test_rollouts(self):
        try:
            self.env.get_rollouts(self.rnd_agent_pair, 3)
        except Exception as e:
            self.fail("Failed to get rollouts from environment:\n{}".format(e))

    def test_one_player_env(self):
        mdp = OvercookedGridworld.from_layout_name("cramped_room_single")
        env = OvercookedEnv(mdp, horizon=12)
        a0 = FixedPlanAgent([stay, w, w, e, e, n, e, interact, w, n, interact])
        ag = AgentGroup(a0)
        env.run_agents(ag, display=False)
        self.assertEqual(env.state.players_pos_and_or, (((2, 1), (0, -1)), ))

    def test_four_player_env_fixed(self):
        mdp = OvercookedGridworld.from_layout_name("multiplayer_schelling")
        assert mdp.num_players == 4
        env = OvercookedEnv(mdp, horizon=16)
        a0 = FixedPlanAgent([stay, w, w])
        a1 = FixedPlanAgent([
            stay, stay, e, e, n, n, n, e, interact, n, n, w, w, w, n, interact,
            e
        ])
        a2 = FixedPlanAgent(
            [stay, w, interact, n, n, e, e, e, n, e, n, interact, w])
        a3 = FixedPlanAgent([e, interact, n, n, w, w, w, n, interact, e, s])
        ag = AgentGroup(a0, a1, a2, a3)
        env.run_agents(ag, display=False)
        self.assertEqual(env.state.players_pos_and_or,
                         (((1, 1), (-1, 0)), ((3, 1), (0, -1)),
                          ((2, 1), (-1, 0)), ((4, 2), (0, 1))))

    def test_multiple_mdp_env(self):
        mdp0 = OvercookedGridworld.from_layout_name("cramped_room")
        mdp1 = OvercookedGridworld.from_layout_name("counter_circuit")
        mdp_fn = lambda: np.random.choice([mdp0, mdp1])

        # Default env
        env = OvercookedEnv(mdp_fn, horizon=100)
        env.get_rollouts(self.rnd_agent_pair, 5)

    def test_starting_position_randomization(self):
        self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room")
        start_state_fn = self.base_mdp.get_random_start_state_fn(
            random_start_pos=True, rnd_obj_prob_thresh=0.0)
        env = OvercookedEnv(self.base_mdp, start_state_fn)
        start_state = env.state.players_pos_and_or
        for _ in range(3):
            env.reset()
            print(env)
            curr_terrain = env.state.players_pos_and_or
            self.assertFalse(np.array_equal(start_state, curr_terrain))

    def test_starting_obj_randomization(self):
        self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room")
        start_state_fn = self.base_mdp.get_random_start_state_fn(
            random_start_pos=False, rnd_obj_prob_thresh=0.8)
        env = OvercookedEnv(self.base_mdp, start_state_fn)
        start_state = env.state.all_objects_list
        for _ in range(3):
            env.reset()
            print(env)
            curr_terrain = env.state.all_objects_list
            self.assertFalse(np.array_equal(start_state, curr_terrain))

    def test_failing_rnd_layout(self):
        with self.assertRaises(TypeError):
            mdp_gen_params = {"None": None}
            mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params)
            OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS)

    def test_random_layout(self):
        mdp_gen_params = {"prop_feats": (1, 1)}
        mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params)
        env = OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS)
        start_terrain = env.mdp.terrain_mtx

        for _ in range(3):
            env.reset()
            print(env)
            curr_terrain = env.mdp.terrain_mtx
            self.assertFalse(np.array_equal(start_terrain, curr_terrain))

        mdp_gen_params = {
            "mdp_choices": ['cramped_room', 'asymmetric_advantages']
        }
        mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params)
        env = OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS)

        layouts_seen = []
        for _ in range(10):
            layouts_seen.append(env.mdp.terrain_mtx)
            env.reset()
        all_same_layout = all([
            np.array_equal(env.mdp.terrain_mtx, terrain)
            for terrain in layouts_seen
        ])
        self.assertFalse(all_same_layout)
Exemple #12
0
def learn(*,
          network,
          env,
          total_timesteps,
          early_stopping=False,
          eval_env=None,
          seed=None,
          nsteps=2048,
          ent_coef=0.0,
          lr=3e-4,
          vf_coef=0.5,
          max_grad_norm=0.5,
          gamma=0.99,
          lam=0.95,
          log_interval=10,
          nminibatches=4,
          noptepochs=4,
          cliprange=0.2,
          save_interval=0,
          load_path=None,
          model_fn=None,
          scope='',
          **network_kwargs):
    '''
    Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)

    Parameters:
    ----------

    network:                          policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                                      specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                                      tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                                      neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                                      See common/models.py/lstm for more details on using recurrent nets in policies

    env: baselines.common.vec_env.VecEnv     environment. Needs to be vectorized for parallel environment simulation.
                                      The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class.


    nsteps: int                       number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                                      nenv is number of environment copies simulated in parallel)

    total_timesteps: int              number of timesteps (i.e. number of actions taken in the environment)

    ent_coef: float                   policy entropy coefficient in the optimization objective

    lr: float or function             learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the
                                      training and 0 is the end of the training.

    vf_coef: float                    value function loss coefficient in the optimization objective

    max_grad_norm: float or None      gradient norm clipping coefficient

    gamma: float                      discounting factor

    lam: float                        advantage estimation discounting factor (lambda in the paper)

    log_interval: int                 number of timesteps between logging events

    nminibatches: int                 number of training minibatches per update. For recurrent policies,
                                      should be smaller or equal than number of environments run in parallel.

    noptepochs: int                   number of training epochs per update

    cliprange: float or function      clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training
                                      and 0 is the end of the training

    save_interval: int                number of timesteps between saving events

    load_path: str                    path to load the model from

    **network_kwargs:                 keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
                                      For instance, 'mlp' network architecture has arguments num_hidden and num_layers.



    '''
    additional_params = network_kwargs["network_kwargs"]
    from baselines import logger

    # set_global_seeds(seed) We deal with seeds upstream

    if "LR_ANNEALING" in additional_params.keys():
        lr_reduction_factor = additional_params["LR_ANNEALING"]
        start_lr = lr
        lr = lambda prop: (start_lr / lr_reduction_factor) + (
            start_lr - (start_lr / lr_reduction_factor
                        )) * prop  # Anneals linearly from lr to lr/red factor

    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)
    total_timesteps = int(total_timesteps)

    policy = build_policy(env, network, **network_kwargs)

    bestrew = 0
    # Get the nb of env
    nenvs = env.num_envs

    # Get state_space and action_space
    ob_space = env.observation_space
    ac_space = env.action_space

    # Calculate the batch_size
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches

    # Instantiate the model object (that creates act_model and train_model)
    if model_fn is None:
        from baselines.ppo2.model import Model
        model_fn = Model

    model = model_fn(policy=policy,
                     ob_space=ob_space,
                     ac_space=ac_space,
                     nbatch_act=nenvs,
                     nbatch_train=nbatch_train,
                     nsteps=nsteps,
                     ent_coef=ent_coef,
                     vf_coef=vf_coef,
                     max_grad_norm=max_grad_norm,
                     scope=scope)

    if load_path is not None:
        model.load(load_path)
    # Instantiate the runner object
    runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
    if eval_env is not None:
        eval_runner = Runner(env=eval_env,
                             model=model,
                             nsteps=nsteps,
                             gamma=gamma,
                             lam=lam)

    epinfobuf = deque(maxlen=100)
    if eval_env is not None:
        eval_epinfobuf = deque(maxlen=100)

    # Start total timer
    tfirststart = time.perf_counter()

    best_rew_per_step = 0

    run_info = defaultdict(list)
    nupdates = total_timesteps // nbatch
    print("TOT NUM UPDATES", nupdates)
    for update in range(1, nupdates + 1):
        assert nbatch % nminibatches == 0, "Have {} total batch size and want {} minibatches, can't split evenly".format(
            nbatch, nminibatches)
        # Start timer
        tstart = time.perf_counter()
        frac = 1.0 - (update - 1.0) / nupdates
        # Calculate the learning rate
        lrnow = lr(frac)
        # Calculate the cliprange
        cliprangenow = cliprange(frac)
        # Get minibatch
        obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run(
        )  #pylint: disable=E0632

        if eval_env is not None:
            eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run(
            )  #pylint: disable=E0632

        eplenmean = safemean([epinfo['ep_length'] for epinfo in epinfos])
        eprewmean = safemean([epinfo['r'] for epinfo in epinfos])
        rew_per_step = eprewmean / eplenmean

        print("Curr learning rate {} \t Curr reward per step {}".format(
            lrnow, rew_per_step))

        if rew_per_step > best_rew_per_step and early_stopping:
            # Avoid updating best model at first iteration because the means might be a bit off because
            # of how the multithreaded batch simulation works
            best_rew_per_step = eprewmean / eplenmean
            checkdir = osp.join(logger.get_dir(), 'checkpoints')
            model.save(checkdir + ".temp_best_model")
            print("Saved model as best", best_rew_per_step, "avg rew/step")

        epinfobuf.extend(epinfos)
        if eval_env is not None:
            eval_epinfobuf.extend(eval_epinfos)

        # Here what we're going to do is for each minibatch calculate the loss and append it.
        mblossvals = []
        if states is None:  # nonrecurrent version
            # Index of each element of batch_size
            # Create the indices array
            inds = np.arange(nbatch)
            for _ in range(noptepochs):
                # Randomize the indexes
                np.random.shuffle(inds)
                # 0 to batch_size with batch_train_size step
                for start in tqdm.trange(0,
                                         nbatch,
                                         nbatch_train,
                                         desc="{}/{}".format(_, noptepochs)):
                    end = start + nbatch_train
                    mbinds = inds[start:end]
                    slices = (arr[mbinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mblossvals.append(model.train(lrnow, cliprangenow,
                                                  *slices))

        else:  # recurrent version
            assert nenvs % nminibatches == 0
            envsperbatch = nenvs // nminibatches
            envinds = np.arange(nenvs)
            flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
            for _ in range(noptepochs):
                np.random.shuffle(envinds)
                for start in range(0, nenvs, envsperbatch):
                    end = start + envsperbatch
                    mbenvinds = envinds[start:end]
                    mbflatinds = flatinds[mbenvinds].ravel()
                    slices = (arr[mbflatinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mbstates = states[mbenvinds]
                    mblossvals.append(
                        model.train(lrnow, cliprangenow, *slices, mbstates))

        # Feedforward --> get losses --> update
        lossvals = np.mean(mblossvals, axis=0)
        # End timer
        tnow = time.perf_counter()
        # Calculate the fps (frame per second)
        fps = int(nbatch / (tnow - tstart))

        if update % log_interval == 0 or update == 1:
            # Calculates if value function is a good predicator of the returns (ev > 1)
            # or if it's just worse than predicting nothing (ev =< 0)
            ev = explained_variance(values, returns)
            logger.logkv("serial_timesteps", update * nsteps)
            logger.logkv("nupdates", update)
            logger.logkv("total_timesteps", update * nbatch)
            logger.logkv("fps", fps)
            logger.logkv("explained_variance", float(ev))

            eprewmean = safemean([epinfo['r'] for epinfo in epinfobuf])
            ep_dense_rew_mean = safemean(
                [epinfo['ep_shaped_r'] for epinfo in epinfobuf])
            ep_sparse_rew_mean = safemean(
                [epinfo['ep_sparse_r'] for epinfo in epinfobuf])
            eplenmean = safemean([epinfo['ep_length'] for epinfo in epinfobuf])
            run_info['eprewmean'].append(eprewmean)
            run_info['ep_dense_rew_mean'].append(ep_dense_rew_mean)
            run_info['ep_sparse_rew_mean'].append(ep_sparse_rew_mean)
            run_info['eplenmean'].append(eplenmean)
            run_info['explained_variance'].append(float(ev))

            logger.logkv(
                'true_eprew',
                safemean([epinfo['ep_sparse_r'] for epinfo in epinfobuf]))
            logger.logkv('eprewmean', eprewmean)
            logger.logkv('eplenmean', eplenmean)
            if eval_env is not None:
                logger.logkv(
                    'eval_eprewmean',
                    safemean([epinfo['r'] for epinfo in eval_epinfobuf]))
                logger.logkv(
                    'eval_eplenmean',
                    safemean([epinfo['l'] for epinfo in eval_epinfobuf]))

            time_elapsed = tnow - tfirststart
            logger.logkv('time_elapsed', time_elapsed)

            time_per_update = time_elapsed / update
            time_remaining = (nupdates - update) * time_per_update
            logger.logkv('time_remaining', time_remaining / 60)

            for (lossval, lossname) in zip(lossvals, model.loss_names):
                run_info[lossname].append(lossval)

                logger.logkv(lossname, lossval)

            if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
                logger.dumpkvs()

            # Update current logs
            if additional_params["RUN_TYPE"] in ["ppo", "joint_ppo"]:
                from overcooked_ai_py.utils import save_dict_to_file
                save_dict_to_file(run_info,
                                  additional_params["SAVE_DIR"] + "logs")

                # Linear annealing of reward shaping
                if additional_params["REW_SHAPING_HORIZON"] != 0:
                    # Piecewise linear annealing schedule
                    # annealing_thresh: until when we should stop doing 100% reward shaping
                    # annealing_horizon: when we should reach doing 0% reward shaping
                    annealing_horizon = additional_params[
                        "REW_SHAPING_HORIZON"]
                    annealing_thresh = 0

                    def fn(x):
                        if annealing_thresh != 0 and annealing_thresh - (
                                annealing_horizon / annealing_thresh) * x > 1:
                            return 1
                        else:
                            fn = lambda x: -1 * (x - annealing_thresh) * 1 / (
                                annealing_horizon - annealing_thresh) + 1
                            return max(fn(x), 0)

                    curr_timestep = update * nbatch
                    curr_reward_shaping = fn(curr_timestep)
                    env.update_reward_shaping_param(curr_reward_shaping)
                    print("Current reward shaping", curr_reward_shaping)

                sp_horizon = additional_params["SELF_PLAY_HORIZON"]

                # Save/overwrite best model if past a certain threshold
                if ep_sparse_rew_mean > bestrew and ep_sparse_rew_mean > additional_params[
                        "SAVE_BEST_THRESH"]:
                    # Don't save best model if still doing some self play and it's supposed to be a BC model
                    if additional_params[
                            "OTHER_AGENT_TYPE"][:
                                                2] == "bc" and sp_horizon != 0 and env.self_play_randomization > 0:
                        pass
                    else:
                        from human_aware_rl.ppo.ppo import save_ppo_model
                        print("BEST REW", ep_sparse_rew_mean,
                              "overwriting previous model with", bestrew)
                        save_ppo_model(
                            model, "{}seed{}/best".format(
                                additional_params["SAVE_DIR"],
                                additional_params["CURR_SEED"]))
                        bestrew = max(ep_sparse_rew_mean, bestrew)

                # If not sp run, and horizon is not None,
                # vary amount of self play over time, either with a sigmoidal feedback loop
                # or with a fixed piecewise linear schedule.
                if additional_params[
                        "OTHER_AGENT_TYPE"] != "sp" and sp_horizon is not None:
                    if type(sp_horizon) is not list:
                        # Sigmoid self-play schedule based on current performance (not recommended)
                        curr_reward = ep_sparse_rew_mean

                        rew_target = sp_horizon
                        shift = rew_target / 2
                        t = (1 / rew_target) * 10
                        fn = lambda x: -1 * (np.exp(t * (x - shift)) /
                                             (1 + np.exp(t * (x - shift)))) + 1

                        env.self_play_randomization = fn(curr_reward)
                        print("Current self-play randomization",
                              env.self_play_randomization)
                    else:
                        assert len(sp_horizon) == 2
                        # Piecewise linear self-play schedule

                        # self_play_thresh: when we should stop doing 100% self-play
                        # self_play_timeline: when we should reach doing 0% self-play
                        self_play_thresh, self_play_timeline = sp_horizon

                        def fn(x):
                            if self_play_thresh != 0 and self_play_timeline - (
                                    self_play_timeline /
                                    self_play_thresh) * x > 1:
                                return 1
                            else:
                                fn = lambda x: -1 * (
                                    x - self_play_thresh) * 1 / (
                                        self_play_timeline - self_play_thresh
                                    ) + 1
                                return max(fn(x), 0)

                        curr_timestep = update * nbatch
                        env.self_play_randomization = fn(curr_timestep)
                        print("Current self-play randomization",
                              env.self_play_randomization)

        if save_interval and (update % save_interval == 0
                              or update == 1) and logger.get_dir() and (
                                  MPI is None
                                  or MPI.COMM_WORLD.Get_rank() == 0):
            checkdir = osp.join(logger.get_dir(), 'checkpoints')
            os.makedirs(checkdir, exist_ok=True)
            savepath = osp.join(checkdir, '%.5i' % update)
            print('Saving to', savepath)
            model.save(savepath)

        # Visualization of rollouts with actual other agent
        run_type = additional_params["RUN_TYPE"]
        if run_type in ["ppo", "joint_ppo"
                        ] and update % additional_params["VIZ_FREQUENCY"] == 0:
            from overcooked_ai_py.mdp.overcooked_env import OvercookedEnv
            from overcooked_ai_py.mdp.overcooked_mdp import OvercookedGridworld
            from overcooked_ai_py.agents.agent import AgentPair
            from overcooked_ai_py.agents.benchmarking import AgentEvaluator
            from human_aware_rl.baselines_utils import get_agent_from_model
            print(additional_params["SAVE_DIR"])

            mdp = OvercookedGridworld.from_layout_name(
                **additional_params["mdp_params"])
            overcooked_env = OvercookedEnv(mdp,
                                           **additional_params["env_params"])
            agent = get_agent_from_model(
                model,
                additional_params["sim_threads"],
                is_joint_action=(run_type == "joint_ppo"))
            agent.set_mdp(mdp)

            if run_type == "ppo":
                if additional_params["OTHER_AGENT_TYPE"] == 'sp':
                    agent_pair = AgentPair(agent,
                                           agent,
                                           allow_duplicate_agents=True)
                else:
                    print("PPO agent on index 0:")
                    env.other_agent.set_mdp(mdp)
                    agent_pair = AgentPair(agent, env.other_agent)
                    trajectory, time_taken, tot_rewards, tot_shaped_rewards = overcooked_env.run_agents(
                        agent_pair, display=True, display_until=100)
                    overcooked_env.reset()
                    agent_pair.reset()
                    print("tot rew", tot_rewards, "tot rew shaped",
                          tot_shaped_rewards)

                    print("PPO agent on index 1:")
                    agent_pair = AgentPair(env.other_agent, agent)

            else:
                agent_pair = AgentPair(agent)

            trajectory, time_taken, tot_rewards, tot_shaped_rewards = overcooked_env.run_agents(
                agent_pair, display=True, display_until=100)
            overcooked_env.reset()
            agent_pair.reset()
            print("tot rew", tot_rewards, "tot rew shaped", tot_shaped_rewards)
            print(additional_params["SAVE_DIR"])

    if nupdates > 0 and early_stopping:
        checkdir = osp.join(logger.get_dir(), 'checkpoints')
        print("Loaded best model", best_rew_per_step)
        model.load(checkdir + ".temp_best_model")
    return model, run_info